5 research outputs found

    Terahertz-Driven Nonlinear Spin Response of Antiferromagnetic Nickel Oxide

    Get PDF
    Terahertz magnetic fields with amplitudes of up to 0.4 Tesla drive magnon resonances in nickel oxide while the induced dynamics is recorded by femtosecond magneto-optical probing. We observe distinct spin-mediated optical nonlinearities, including oscillations at the second harmonic of the 1 THz magnon mode. The latter originate from coherent dynamics of the longitudinal component of the antiferromagnetic order parameter, which are probed by magneto-optical effects of second order in the spin deflection. These observations allow us to dynamically disentangle electronic from lattice-related contributions to magnetic linear birefringence and dichroism-information so far only accessible by ultrafast THz spin control. The nonlinearities discussed here foreshadow physics that will become essential in future subcycle spin switching

    Oncotarget / The modified glasgow prognostic score is an independent prognostic indicator in neoadjuvantly treated adenocarcinoma of the esophagogastric junction

    No full text
    The modified Glasgow Prognostic Score (mGPS) combines the indicators of decreased plasma albumin and elevated CRP. In a number of malignancies, elevated mGPS is associated with poor survival. Aim of this study was to investigate the prognostic role of mGPS in patients with neoadjuvantly treated adenocarcinomas of the esophagogastric junction 256 patients from a prospective database undergoing surgical resection after neoadjuvant treatment between 2003 and 2014 were evaluated. mGPS was scored as 0, 1, or 2 based on CRP (>1.0 mg/dl) and albumin (<35 g/L) from blood samples taken prior (preNT-mGPS) and after (postNT-mGPS) neoadjuvant therapy. Scores were correlated with clinicopathological patients characteristics. From 155 Patients, sufficient data was available. Median follow-up was 63.8 months (33.389.5 months). In univariate analysis, Cox proportional hazard model shows significant shorter patients OS (p = 0.04) and DFS (p = 0.02) for increased postNT-mGPS, preNT-hypoalbuminemia (OS: p = 0.003; DFS: p = 0.002) and post-NT-CRP (OS: p = 0.03; DFS: p = 0.04). Elevated postNT-mGPS and preNT-hypoalbuminemia remained significant prognostic factors in multivariate analysis for OS (p = 0.02; p = 0.005,) and DFS (p = 0.02, p = 0.004) with tumor differentiation and tumor staging as significant covariates. PostNT-mGPS and preNT-hypoalbuminemia are independent prognostic indicators in patients with neoadjuvantly treated adenocarcinomas of the esophagogastric junction and significantly associated with diminished OS and DFS.(VLID)471339

    Data archive of "Subcycle observation of lightwave-driven Dirac currents in a topological surface band"

    No full text
    Harnessing the carrier wave of light as an alternating-current bias may enable electronics at optical clock rates(1). Lightwave-driven currents have been assumed to be essential for high-harmonic generation in solids(2-6), charge transport in nanostructures(7-8), attosecond-streaking experiments(9-16) and atomic-resolution ultrafast microscopy(17-18). However, in conventional semiconductors and dielectrics, the finite effective mass and ultrafast scattering of electrons limit their ballistic excursion and velocity. The Dirac-like, quasi-relativistic band structure of topological insulators(19-29) may allow these constraints to be lifted and may thus open a new era of lightwave electronics. To understand the associated, complex motion of electrons, comprehensive experimental access to carrier-wave-driven currents is crucial. Here we report angle-resolved photoemission spectroscopy with subcycle time resolution that enables us to observe directly how the carrier wave of a terahertz light pulse accelerates Dirac fermions in the band structure of the topological surface state of Bi2Te3. While terahertz streaking of photoemitted electrons traces the electromagnetic field at the surface, the acceleration of Dirac states leads to a strong redistribution of electrons in momentum space. The inertia-free surface currents are protected by spin-momentum locking and reach peak densities as large as two amps per centimetre, with ballistic mean free paths of several hundreds of nanometres, opening up a realistic parameter space for all-coherent lightwave-driven electronic devices. Furthermore, our subcycle-resolution analysis of the band structure may greatly improve our understanding of electron dynamics and strong-field interaction in solids

    Coherent cyclotron motion beyond Kohn’s theorem

    No full text
    In solids, the high density of charged particles makes many-body interactions a pervasive principle governing optics and electronics(1-12). However, Walter Kohn found in 1961 that the cyclotron resonance of Landau-quantized electrons is independent of the seemingly inescapable Coulomb interaction between electrons(2). Although this surprising theorem has been exploited in sophisticated quantum phenomena(13-15), such as ultrastrong light-matter coupling(16), superradiance(17) and coherent control(18), the complete absence of nonlinearities excludes many intriguing possibilities, such as quantum-logic protocols(19). Here, we use intense terahertz pulses to drive the cyclotron response of a two-dimensional electron gas beyond the protective limits of Kohn's theorem. Anharmonic Landau ladder climbing and distinct terahertz four-and six-wave mixing signatures occur, which our theory links to dynamic Coulomb effects between electrons and the positively charged ion background. This new context for Kohn's theorem unveils previously inaccessible internal degrees of freedom of Landau electrons, opening up new realms of ultrafast quantum control for electrons

    PD-L1 expression is an independent predictor of favorable outcome in patients with localized esophageal adenocarcinoma

    Full text link
    Background. The outcome of patients with adenocarcinoma of the esophagogastric junction (AEG) remains poor. The programmed cell-death-protein-1 (PD-1), a co-inhibitory receptor primarily expressed by T-cells, represents a potential new therapeutic target. PD-1, PD-1 ligand 1 (PD-L1), and PD-L2 expression have all been described as prognostic factors in a variety of cancers. Their expression patterns in AEG, however, are poorly understood. We analyzed PD-L1, PD-L2 and PD-1 expression by tumor-infiltrating lymphocytes (TILs) and cancer-cells in tumor-biospecimens in AEG-patients. Methods. 168 patients who underwent esophagectomy because of AEG between 1992-2011 were included in this study. PD-L1, PD-L2 and PD-1 expression were evaluated by immunohistochemistry and correlated with various clinicopathological parameters, disease-free survival (DFS) and long-term overall survival (OS). Results. PD-L1 expression by cancer-cells (cancer-cell-PD-L1+) was found in 43.5% of patients whereas PD-L1 expression by TILs (TILs-PD-L1+) was observed in 69%. PD-L2 expression by cancer-cells and TILs was only found in 3.5% and 1.8%, respectively. Additionally, 77.4% of tumors contained PD-1+-cancer-cells and 81% PD-1+-TILs. Patients with increased expression of PD-1 by cancer-cells and TILs showed significantly reduced OS and DFS, as determined by univariate, but not multivariate analysis. Expression of PD-L1 by cancer-cells was found to be an independent predictor for improved DFS (p = 0.038) and OS (p = 0.042) in multivariate analysis. Conclusions. Cancer cells and TILs displayed PD-L1 expression in around 50% and PD-1 expression in around 80% of tumor-biospecimens obtained from AEG patients. Expression of PD-L1 is an independent predictor of favorable outcome in AEG, whereas PD-1 expression is associated with worse outcome and advanced tumor stage
    corecore