10,745 research outputs found

    Successive Refinement of Shannon Cipher System Under Maximal Leakage

    Full text link
    We study the successive refinement setting of Shannon cipher system (SCS) under the maximal leakage constraint for discrete memoryless sources under bounded distortion measures. Specifically, we generalize the threat model for the point-to-point rate-distortion setting of Issa, Wagner and Kamath (T-IT 2020) to the multiterminal successive refinement setting. Under mild conditions that correspond to partial secrecy, we characterize the asymptotically optimal normalized maximal leakage region for both the joint excess-distortion probability (JEP) and the expected distortion reliability constraints. Under JEP, in the achievability part, we propose a type-based coding scheme, analyze the reliability guarantee for JEP and bound the leakage of the information source through compressed versions. In the converse part, by analyzing a guessing scheme of the eavesdropper, we prove the optimality of our achievability result. Under expected distortion, the achievability part is established similarly to the JEP counterpart. The converse proof proceeds by generalizing the corresponding results for the rate-distortion setting of SCS by Schieler and Cuff (T-IT 2014) to the successive refinement setting. Somewhat surprisingly, the normalized maximal leakage regions under both JEP and expected distortion constraints are identical under certain conditions, although JEP appears to be a stronger reliability constraint

    Resource allocation for maximizing outage throughput in OFDMA systems with finite-rate feedback

    Get PDF
    Previous works on orthogonal frequency division multiple access (OFDMA) systems with quantized channel state information (CSI) were mainly based on suboptimal quantization methods. In this paper, we consider the performance limit of OFDMA systems with quantized CSI over independent Rayleigh fading channels using the rate-distortion theory. First, we establish a lower bound on the capacity of the feedback channel and build the test channel that achieves this lower bound. Then, with the derived test channel, we characterize the system performance with the outage throughput and formulate the outage throughput maximization problem with quantized channel state information (CSI). To solve this problem in low complexity, we develop a suboptimal algorithm that performs resource allocation in two steps: subcarrier allocation and power allocation. Using this approach, we can numerically evaluate the outage throughput in terms of feedback rate. Numerical results show that this suboptimal algorithm can provide a near optimal performance (with a performance loss of less than 5%) and the outage throughput with a limited feedback rate can be close to that with perfect CSI.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000294918800001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Engineering, Electrical & ElectronicTelecommunicationsSCI(E)1ARTICLEnul

    Transport properties of a holographic model with novel gauge-axion coupling

    Full text link
    We investigate the transport properties within a holographic model characterized by a novel gauge-axion coupling. A key innovation is the introduction of the direct coupling between axion fields, the antisymmetric tensor, and the gauge field in our bulk theory. This novel coupling term leads to the emergence of non-diagonal components in the conductivity tensor. An important characteristic is that the off-diagonal elements manifest antisymmetry. Remarkably, the conductivity behavior in this model akin to that of Hall conductivity. Additionally, this model can also achieve metal-insulator transition.Comment: 28 pages, 11 figures, References adde

    Mapping Soil Alkalinity and Salinity in Northern Songnen Plain, China with the HJ-1 Hyperspectral Imager Data and Partial Least Squares Regression

    Get PDF
    In arid and semi-arid regions, identifying and monitoring of soil alkalinity and salinity are in urgently need for preventing land degradation and maintaining ecological balances. In this study, physicochemical, statistical, and spectral analysis revealed that potential of hydrogen (pH) and electrical conductivity (EC) characterized the saline-alkali soils and were sensitive to the visible and near infrared (VIS-NIR) wavelengths. On the basis of soil pH, EC, and spectral data, the partial least squares regression (PLSR) models for estimating soil alkalinity and salinity were constructed. The R2 values for soil pH and EC models were 0.77 and 0.48, and the root mean square errors (RMSEs) were 0.95 and 17.92 dS/m, respectively. The ratios of performance to inter-quartile distance (RPIQ) for the soil pH and EC models were 3.84 and 0.14, respectively, indicating that the soil pH model performed well but the soil EC model was not considerably reliable. With the validation dataset, the RMSEs of the two models were 1.06 and 18.92 dS/m. With the PLSR models applied to hyperspectral data acquired from the hyperspectral imager (HSI) onboard the HJ-1A satellite (launched in 2008 by China), the soil alkalinity and salinity distributions were mapped in the study area, and were validated with RMSEs of 1.09 and 17.30 dS/m, respectively. These findings revealed that the hyperspectral images in the VIS-NIR wavelengths had the potential to map soil alkalinity and salinity in the Songnen Plain, China

    Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation

    Full text link
    Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction

    Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte.

    Get PDF
    Recent works into sulfide-type solid electrolyte materials have attracted much attention among the battery community. Specifically, the oxidative decomposition of phosphorus and sulfur based solid state electrolyte has been considered one of the main hurdles towards practical application. Here we demonstrate that this phenomenon can be leveraged when lithium thiophosphate is applied as an electrochemically "switched-on" functional redox mediator-generator for the activation of commercial bulk lithium sulfide at up to 70 wt.% lithium sulfide electrode content. X-ray adsorption near-edge spectroscopy coupled with electrochemical impedance spectroscopy and Raman indicate a catalytic effect of generated redox mediators on the first charge of lithium sulfide. In contrast to pre-solvated redox mediator species, this design decouples the lithium sulfide activation process from the constraints of low electrolyte content cell operation stemming from pre-solvated redox mediators. Reasonable performance is demonstrated at strict testing conditions

    InfoEntropy Loss to Mitigate Bias of Learning Difficulties for Generative Language Models

    Full text link
    Generative language models are usually pretrained on large text corpus via predicting the next token (i.e., sub-word/word/phrase) given the previous ones. Recent works have demonstrated the impressive performance of large generative language models on downstream tasks. However, existing generative language models generally neglect an inherent challenge in text corpus during training, i.e., the imbalance between frequent tokens and infrequent ones. It can lead a language model to be dominated by common and easy-to-learn tokens, thereby overlooking the infrequent and difficult-to-learn ones. To alleviate that, we propose an Information Entropy Loss (InfoEntropy Loss) function. During training, it can dynamically assess the learning difficulty of a to-be-learned token, according to the information entropy of the corresponding predicted probability distribution over the vocabulary. Then it scales the training loss adaptively, trying to lead the model to focus more on the difficult-to-learn tokens. On the Pile dataset, we train generative language models at different scales of 468M, 1.2B, and 6.7B parameters. Experiments reveal that models incorporating the proposed InfoEntropy Loss can gain consistent performance improvement on downstream benchmarks
    corecore