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Abstract

Previous works on orthogonal frequency division multiple access (OFDMA) systems with quantized channel state
information (CSI) were mainly based on suboptimal quantization methods. In this paper, we consider the
performance limit of OFDMA systems with quantized CSI over independent Rayleigh fading channels using the
rate-distortion theory. First, we establish a lower bound on the capacity of the feedback channel and build the test
channel that achieves this lower bound. Then, with the derived test channel, we characterize the system
performance with the outage throughput and formulate the outage throughput maximization problem with
quantized channel state information (CSI). To solve this problem in low complexity, we develop a suboptimal
algorithm that performs resource allocation in two steps: subcarrier allocation and power allocation. Using this
approach, we can numerically evaluate the outage throughput in terms of feedback rate. Numerical results show
that this suboptimal algorithm can provide a near optimal performance (with a performance loss of less than 5%)
and the outage throughput with a limited feedback rate can be close to that with perfect CSI.

Keywords: Orthogonal frequency division multiple access (OFDMA), limited feedback, quantized channel informa-
tion, rate-distortion, resource allocation, two-step suboptimal algorithm

1 Introduction
Orthogonal frequency division multiplexing (OFDM) is
a promising technique for the next-generation wireless
communication systems. OFDM divides the frequency-
selective fading channel into N orthogonal flat-fading
subcarriers to provide a high data rate. Orthogonal fre-
quency division multiple access (OFDMA) adds multiple
access to OFDM by allowing a number of users to use
different subcarriers. One aim of the OFDMA technique
is to find an optimal allocation of resources to users
using channel adaptive techniques [1]. It implies that
the channel state information (CSI) of users should be
known to the base station (BS). However, in the fre-
quency division duplexing (FDD-) OFDMA systems, the
BS only obtains the quantized CSI. For downlink trans-
missions, the BS requires the CSI with the minimum
distortion to maximize the transmission rate; for the

feedback channel, given a feedback rate constraint, the
minimum distortion of the downlink CSI can be charac-
terized by the rate-distortion theory [2]. Thus, the maxi-
mum throughput of the OFDMA systems will be
achieved, if the feedback CSI is optimized in terms of
the rate-distortion function (RDF) [2]. However, existing
research works, such as [3-5], mainly focused on simple
but suboptimal quantization methods, and did not
shown the best performance of OFDMA systems.
In this paper, we focus on the performance limit of

the OFDMA system with finite feedback rate. As typi-
cally done in the literature (e.g., [3-5]), we assume inde-
pendent Rayleigh downlink channels over subcarriers, i.
e., the channel power gain |H|2 on each subcarrier is
exponentially distributed. We use the RDF to character-
ize the lower bound on the required feedback channel’s
capacity for a given mean quantization error under
OFDMA downlink channels [2]. The author in [6]
investigated the optimal encoding of the exponential
inter-arrival time of a Poisson process. The RDF of the
exponentially distributed time was evaluated with a
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distortion equal to the absolute error between the quan-
tized arrival time and the actual arrival time. This
approach, however, does not result in closed-form
results. Here, we consider the alternative approach
where the quantized channel gain is less than or equal
to the actual channel gain. This constraint applies to the
situation in which the truncation quantization method is
employed, and enables us to derive the analytical
expression for RDF. Once the relation between the dis-
tortion (mean magnitude error associated with channel
quantization) and rate (capacity of feedback channel)
has been established, the resource allocation problem
with quantized CSI can be formulated under feedback
capacity constraints.
We introduce the outage throughput as the perfor-

mance measure for the downlink throughput. Here, we
define the outage throughput as the maximum expected
rate of information delivered to users in non-outage
states, where the data rate is lower than the channel
capacity. Clearly, the definition of outage throughput is
different from that of the ergodic throughput, which is
defined as a long-term achievable throughput averaged
over all fading blocks [7]. The performance measure of
the ergodic throughput is suitable for applications
insensitive to delay, but not suitable for delay-sensitive
applications. For the latter ones, the outage probability
has been considered as a valid performance measure
[8-10]. It is desirable to minimize the outage probability
for the given quantized CSI. However, low outage prob-
ability results in low throughput. There exists a tradeoff
between minimizing the outage probability and maxi-
mizing the throughput. Outage throughput, which can
be regarded as a measure of the expected reliably
decodable rate at the user side, provides this tradeoff
between transmission rate and outage probability
[11,12].
We investigate the resource allocation problem to

maximize the outage throughput. We show that the
algorithm that achieves the optimum could have an
exponential time complexity. Thus, to reduce the com-
plexity, we propose a suboptimal algorithm that sepa-
rates the resource allocation into two steps: subcarrier
allocation and power allocation. This suboptimal
approach has a linear complexity in the number of users
and subcarriers and achieves optimality gaps of less than
5%. With the suboptimal approach, the achieved
throughput in the rate-distortion limit is more than
twice of the throughput achieved under the threshold-
based quantization approach, when the feedback rate is
low.
Notations: Bold letters denote vectors and matrices,

and BT denotes the transpose of B. Also, E[·] denotes
the statistical expectation, and in particular, EX[·]
denotes that with respect to X.

1.1 Overview
We continue the introduction with a brief review of
related work in Section 1.2. Section 2 outlines the
downlink channel model and derives the RDF for the
downlink CSI. Section 3 presents the expression of out-
age throughput, formulates the outage throughput maxi-
mization problem with quantized CSI, and proposes the
resource allocation algorithm that achieves a suboptimal
solution. Numerical results are given in Section 4 to
illustrate the performance of the outage throughput
using the proposed algorithm. Conclusions are drawn in
Section 5.

1.2 Related work
In practice, it is difficult for the transmitter to obtain
perfect CSI due to feedback delay (for both FDD and
time division duplexing (TDD)), channel estimation
error (for both FDD and TDD), and quantization error
(for FDD) [13]. The impact of imperfect CSI for OFDM
systems has been an active research area in recent years.
The effect of feedback delay was addressed in [14]. The
author considered a minimum square error channel pre-
diction scheme to overcome the detrimental effect of
feedback delay and proposed resource allocation algo-
rithms to maximize the downlink throughput. The
works in [15-17] focused on the imperfect CSI resulting
from channel estimation error and proposed power
loading algorithms for the single user OFDM system.
Resource allocation with quantized CSI was investigated
in [3-5]. The authors in [3] assumed uniform power dis-
tribution over subcarriers and derived closed-form
expressions for the downlink throughput. In [4,5], the
design parameters related to imperfect CSI, such as
quantization levels and the feedback period, were opti-
mized to reduce the feedback overhead with a guaran-
teed system performance for OFDMA systems.
However, most previous research works, such as [3-5],
were based on suboptimal quantization method.
Recently, the authors in [18] proposed OFDMA
throughput maximization algorithm under the assump-
tion that quantization for CSI feedback is optimized in
terms of the rate-distortion theory point of view. In
[18], the feedback of CSI is assumed to be the Gaussian
channel gain H. However, in resource allocation for
OFDMA systems, we only need the real value of |H|2

instead of the complex value of H. Thus, it could be
more efficient to feed back |H|2 than H to minimize the
CSI feedback rate. In this paper, we consider the quanti-
zation of |H|2.
The aforementioned research works in [3-5,14] take

the ergodic throughput as the performance measure.
For applications insensitive to delay, the ergodic
throughput is a suitable performance measure [7]. On
the other hand, the outage throughput is more
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appropriate to characterize the downlink throughput for
real-time applications [8]. In this work, we discuss the
outage throughput maximization with imperfect CSI.

2 System model
We consider a one-cell OFDMA system with N subcar-
riers (or orthogonal channels) that will be shared by K
users. The system model is depicted in Figure 1. We
assume that each subcarrier is assigned to one user
exclusively and the system employs FDD. It is assumed
that each user perfectly estimates the CSI of the down-
link channel (from the BS to the user), which is simply
referred to as downlink CSI in this paper. Each user
quantizes his/her estimated downlink CSI and sends it
(actually an index of quantized downlink CSI) to the BS
through a dedicated feedback channel. The BS receives
the downlink CSI from all users and utilizes this infor-
mation to assign subcarriers to users and adjust transmit
power for each subcarrier.
Denote by Hk, n the channel gain of user k at subcar-

rier n. Throughout the paper, we assume that the chan-
nel gains are independent over subcarriers and the
probability density function of the channel power gain
ak, n = |Hk, n|

2 is given by

f (x = αk,n) =
1

λk,n

e
−

x
λk,n u(x), (1)

where u(·) denotes the unit step function, and lk, n = E
[ak, n]. Here, the channel power gain ak, n is exponentially
distributed, ak, n ~ exp(lk, n), where exp(m) denotes the
exponential distribution with mean m. Due to the assump-
tion of independent channels, we may not be able to take
the spatial correlation of frequency-selective fading chan-
nels. However, if subcarriers are discontinuously allocated
to a user, the spatial correlation can be ignored.
Now, we consider the quantization of downlink CSI

and determine the capacity of the feedback channel

required to deliver the quantized CSI using the rate-dis-
tortion theory. From this, we can characterize the mini-
mum distortion of the quantized CSI for a given
capacity of the feedback channel.
User k describes his/her knowledge of downlink CSI

Ak = (ak,1, ..., ak, N )T by an index Ik and feeds the index
Ik back to the BS. The BS reproduces

Âk = (α̂k,1, . . . , α̂k,N)T from the index Ik, where α̂k,n is
the quantized description of ak, n. The quantized power
gain α̂k,n is assumed to be not greater than the actual
power gain αk,n, α̂k,n ≤ αk,n.
To measure the accuracy of the quantized CSI, we

introduce the distortion measure function with the mag-
nitude error criterion:

d(Ak, Âk) =
N∑
n=1

|αk,n − α̂k,n|.

Then, we can define the information RDF of Ak as

Rk(Dk) = inf
E[d(Ak,Âk)]≤Dk ,α̂k,n≤αk,n

I(Ak; Âk),

where Dk denotes the upper bound of the mean quan-
tization error and I(·;·)denotes the mutual information.
By the rate-distortion theory [2], this RDF gives a mini-
mum number of bits for the index Ik that can describe
the channel power gain Ak without exceeding the mean
quantization error Dk. The RDF of Ak is given by the
following theorem:
Theorem 1. Let Ak = (ak ,1, ..., ak, N )T be a vector

source with uncorrelated components that are exponen-
tially distributed given by Equation 1. Then,

1. the RDF of Ak is given by

Rk(Dk) =
N∑
n=1

logmax
{

λk,n

θk
, 1

}
,

Figure 1 System model.
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where θk is chosen such that

Dk =
N∑
n=1

min{θk,λk,n};

2. the test channel that achieves the RDF is given by

Ak = Âk + Zk,

where Zk = (zk,1, ..., zk, N) is independent of Âk and
has uncorrelated components with Zk, n ~ exp (min
{θk, lk, n}).

Proof: See Appendix Appendix 1.
Remark 1. In downlink throughput maximization with

imperfect CSI, we require the probability density func-
tion of the actual power gain conditioned on the quan-
tized power gain. By the second part of Theorem 1, for
a given α̂k,n, the probability density function of ak, n is

f (αk,n|α̂k,n) =
1

νk,n
e

−
αk,n − α̂k,n

νk,n u(αk,n − α̂k,n),
(2)

where vk, n = min {θk, lk, n}. Here, the variable vk, n
can be regarded as the mean quantization error for the
channel power gain ak, n.
Remark 2. There are two special cases. By setting θk =

0, from Theorem 1, we have Dk = 0, Rk(Dk) = +∞ and
zk, n = 0. In this case, the CSI is perfectly known to the
BS. On the other hand, by setting θk = +∞, we have

Dk =
∑N

n=1 λk,n and Rk(Dk) = 0, which implies that no
CSI is fed back to the BS.

3 Outage throughput maximization with
quantized CSI
3.1 Problem formulation
For a given capacity of the feedback channel, we have
characterized the distortion in Section 2. With the
quantized downlink CSI, the resource allocation can be
carried out for a given performance measure. From this,
we can formulate the resource allocation with capacity
constraints of the feedback channels. Toward this end,
in this subsection, we introduce the outage throughput
as the performance measure.
Given the quantized CSI, the outage probability on the

n-th subcarrier to the k-th user is defined as

Pout
k,n(γn, α̂k,n,R) = Pr(log(1 + αk,nγn) < R|α̂k,n), (3)

where gn is the input signal error ratio (SNR) of the n-
th subcarrier and R is the transmission rate. From

Equation 3, the maximum transmission rate R that can
maintain the outage probability ε is

R(γn, α̂k,n, ε) = log(1 + γnF
−1
αk,n|α̂k,n

(ε)),

where Fαk,n|α̂k,n(x) = Pr(αk,n < x|α̂k,n). Thus, the
expected rate of information successfully decoded at
user k on subcarrier n is

To
k,n(γn, α̂k,n, ε) = (1 − ε)R(γn, α̂k,n, ε)

= (1 − ε) log(1 + γnF
−1
αk,n|α̂k,n

(ε)).

It is possible to maximize To
k,n by choosing ε,

To
k,n(γn, α̂k,n) = max

ε
To
k,n(γn, α̂k,n, ε). (4)

Here, the throughput To
k,n(γn, α̂k,n) is termed as the

outage throughput. Setting x = F−1
αk,n|α̂k,n

(ε), we obtain

To
k,n(γn, α̂k,n)

= max
x

log(1 + xγn) Pr(αk,n ≥ x|α̂k,n)

= max
x

To
k,n(γn, α̂k,n, x),

(5)

where To
k,n(γn, α̂k,n, x) = log(1 + xγn) Pr(αk,n ≥ x|α̂k,n).

Substituting Equation 2 yields

To
k,n(γn, α̂k,n, x)

= e
−
x − α̂k,n

νk,n log(1 + xγn) x > α̂k,n

log(1 + xγn) 0 ≤ x ≤ α̂k,n

(6)

The optimal x that maximizes To
k,n(γn, α̂k,n, x) is given

by the following theorem:
Theorem 2. There exists a unique globally optimal x

that maximizes To
k,n(γn, α̂k,n, x) in Equation 6, which is

given by

x∗ = max

{
α̂k,n,

eW(γnνk,n) − 1
γn

}
, (7)

where W(x) is the Lambert-W function, which is the
solution to the equation W(x)e W(x) = x.
Proof See Appendix Appendix B.
Thus, for each given transmit power gn, quantized

power gain α̂k,n and quantization error vk, n, we can eval-
uate the outage throughput of the k-th user on the n-th
subcarrier To

k,n(γn, α̂k,n) in Equation 5 by Theorem 2.
The overall outage throughput conditioned on the quan-
tized CSI Â is represented as

To(Â) =
K∑
k=1

N∑
n=1

ρk,n(Â)To
k,n(γn(Â), α̂k,n),
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where rk, n is the subcarrier allocation indicator: if the
n-th subcarrier is assigned to the k-th user, then rk, n =
1; otherwise rk, n = 0. Here, the BS decides gn and rk, n
with the knowledge of quantized CSI Â. To emphasize
this, we denote the input SNR and the allocation indica-
tor as functions of Â by γ (Â) and ρk,n(Â), respectively.
The average outage throughput is thus given by

To = EÂ[T
o(Â)] =

K∑
k=1

N∑
n=1

EÂ[ρk,n(Â)To
k,n(γn(Â), α̂k,n)]. (8)

Now, we can formulate the outage throughput maxi-
mization under feedback capacity constraints:

max
ρk,n(Â),γn(Â)

To

subject to

⎧⎨
⎩
Rk(Dk) ≤ Ck, ∀k,∑

k ρk,n(Â) = 1,∀n, Â,ρk,n(Â) ∈ {0, 1}∑
n γn(Â) ≤ γT ,∀Â, γn(Â) ≥ 0.

(9)

where the first constraint is the feedback capacity con-
straint, the second constraint ensures that each subcar-
rier is assigned to one user exclusively, and the third
constraint is for total transmit power, denoted by gT.
By Theorem 1, for each Rk (Dk), there exists a test

channel that achieves Rk (Dk). Thus, maximizing the
downlink throughput under feedback capacity con-
straints is equivalent to maximizing the downlink
throughput under the corresponding test channel. It can
also be observed that to maximize T°, we can maximize
the conditional outage throughput To(Â) for each reali-
zation of Â under the conditional probability density
function f (αk,n|α̂k,n) given in Equation 2. That is,

max ρk,n,γn

∑
k

∑
nρk,nT

o
k,n(γn, α̂k,n)

subject to

⎧⎨
⎩

∑
kρk,n = 1, ∀n,ρk,n ∈ {0, 1},∑
n γn ≤ γT , γn ≥ 0.

(10)

To make the problem in Equation 10 tractable, we
consider a suboptimal solution by breaking the pro-
blem into two steps: subcarrier allocation and power
allocation. In the first step, subcarriers are assigned to
users under the assumption that the transmit power is
identical over all subcarriers; in the second step,
power is loaded on the subcarriers assigned in the
first step.

3.2 Subcarrier allocation
Under the assumption of gn = gT/N, the optimization
problem in Equation 10 reduces to

max ρk,n

∑
kρk,nT

o
k,n(γT/N, α̂k,n)

subject to
{∑

kρk,n = 1, ∀n,
ρk,n ∈ {0, 1}, ∀k,n.

(11)

It implies that the subcarriers should be assigned
based on the following criterion:

ρk,n =
{
1 if k = argmaxkTo

k,n(γT/N, α̂k,n),
0 otherwise .

The above criterion requires to evaluate KN values of
the rate given in Equation 5. However, we can simplify
this criterion in the case where on subcarrier n, the
mean quantization error vk, n is identical among all
users k. We state the following theorem:
Theorem 3. For any given vk, n,, the throughput

To
k,n(γn, α̂k,n) defined Equation 5 is monotonically

increasing in α̂k,n ∈ (0, +∞) if To
k,n(γn, α̂k,n, x) in Equation

5 is monotonically increasing in α̂k,n ∈ (0, +∞).
Proof By assumption, we have

To
k,n(γn, α̂k,n, x) ≥ To

k,n(γn, α̂
′
k,n, x) for α̂k,n ≥ α̂′

k,n. Thus,

To
k,n(γn, α̂k,n) = max

x
To
k,n(γn, α̂k,n, x)

≥ To
k,n(γn, α̂k,n, x)

≥ To
k,n(γn, α̂

′
k,n, x), ∀x.

It follows that

To
k,n(γn, α̂k,n) ≥ max

x
To
k,n(γn, α̂

′
k,n, x)

= To
k,n(γn, α̂

′
k,n).

It can be shown that To
k,n(γn, α̂k,n, x) given in Equation

6 is monotonically increasing in α̂k,n. Thus, by Theorem
3, in the case of vk’, n = vk, n for k ≠ k’, the subcarrier
allocation reduces to

ρk,n =
{
1 if k = arg maxk α̂ k,n ,
0 otherwise .

When a tie occurs, we can select users in random
fashion.

3.3 Power allocation
Denote by kn the selected user on the n-th subcarrier, i.
e., kn = arg max k rk, n. Given the subcarrier allocation,
the problem 10 becomes

max
γn

∑
nT

o
kn,n(γn, α̂kn ,n)

subject to

{ ∑
nγn ≤ γT ,

γn ≥ 0, ∀n.
(12)

From the Equations 6 and 7, we can observe that
To
kn,n

(γn, α̂kn ,n) is not concave in gn. Hence, the problem
12 is not a convex optimization problem. However, we
can employ a dual approach to obtain a suboptimal
solution.
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The dual problem is

min
μ≥0

g(μ), (13)

where

g(μ) = max
γ1,...,γN

∑
n

To
kn,n(γn, α̂kn ,n) − μ

(∑
n

γn − γT

)

=
∑
n

max
γn

(To
kn,n

(γn, α̂kn ,n) − μγn) + μγT ,

where μ is the Lagrangian multiplier of the first con-
straint in Equation 12. Given μ, the optimal power allo-
cation on the n-th subcarrier is

γn = argmax
γ

To
kn,n(γ , α̂kn ,n) − μγ . (14)

We can use a derivative-free line search method, such
as the golden section method to find the gn for a given
Lagrangian multiplier μ [19].
The Lagrangian dual problem 13 has been shown to

be a convex optimization problem in μ [20]. Thus, we
can use the bisection method to find the optimal global
multiplier μ [19]. The bisection method requires to eval-
uate the first derivative of g(μ)with respect to μ.
Although g(μ) is not continuously differentiable due to
the max function, we can use the subgradient instead
[21],

∂g(μ)
∂μ

= γT −
∑
n

γn,

where gn is obtained from Equation 14.
Using the dual optimization approach, it is possible

that the final power allocation γ ∗
n may not satisfy∑

n γ ∗
n ≤ γT. We can multiply the final power allocation

on each subcarrier γ ∗
n by a constant γT/

∑
n γ ∗

n to arrive
a feasible solution.
Complexity: in the first step, assigning subcarriers

requires to find the maximum To
k,n(γT/N, α̂k,n) among K

users for each subcarrier n, and thereby, the complexity
of subcarrier allocation is O(KN). In the power alloca-
tion, in each iteration for μ in Equation 13, we need to
compute N power allocation values given by Equation
14. Each power allocation value requires a search rou-
tine, which is assumed to converge within Ig iterations.
Assuming that Iμ iterations are required to find the opti-
mal μ, the overall complexity of the suboptimal algo-
rithm is O(KN + Iμ IgN). Ignoring the constants Iμ and
Ig, the complexity is just O(KN).

4 Numerical results
We present several numerical results to demonstrate the
performance of OFDMA systems using the proposed
algorithms. We assume an OFDMA system with the

average channel power gain E[ak, n] = 1. Furthermore,
the feedback capacities of all users are assumed to be
identical. That is, CK = CK’ for all k ≠ k’. By Theorem 1,
it implies that the mean quantization errors of all users
on each subcarrier n are identical, vk, n = vk’, n
First, for the problem 10, we compare the proposed

suboptimal algorithm with a full-searching algorithm.
This full-searching algorithm considers all possible sub-
carrier allocations, and for each subcarrier allocation, it
assigns transmit power based on the dual optimization
approach as proposed in Section 3.3 without projecting
the final power allocation back to the feasible region.
Thus, this algorithm gives an upper bound on the opti-
mal solution to the problem in 10 [20].
Figure 2 plots both the suboptimal results and the

upper bound of the optimal results for an OFDMA sys-
tem with N = 8 subcarriers and K = 2 users. In Figure
2, as the capacity of the feedback channel increases
from Ck = 1.6 bps/Hz to Ck = 64 bps/Hz, the perfor-
mance gap between the suboptimum and the upper
bound of the optimum gets larger. However, in both
scenarios, the difference between the optimum and sub-
optimum is within 5%.
Next, we consider an OFDMA system with N = 1,024

subcarriers and K = 8 users. We compare the outage
throughput achieved in the rate-distortion limit using
the proposed suboptimal algorithm with the threshold-
based quantization method considered in [4,22]. In the
threshold-based quantization method, the channel
power gain ak, n on each subcarrier n of each user k is
quantized in intervals with W= 2NQ thresholds Tq with q
= 0, ..., W, where T0 = 0, TW = + ∞, and NQ is the num-
ber of quantization bits per subcarrier. Here, we assume
that all users have identical NQ on all subcarriers. The
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Figure 2 Comparison of full-searching algorithm and proposed
suboptimal algorithm.
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thresholds Tq for q = 1, ..., W - 1 are determined by par-
titioning the probability density function of ak, n into W
equiprobable intervals. It implies that Tq = F-1(q/W),
where F(·)is the cumulative density function (cdf) of ak,

n. The decoded channel power gain at the BS side is
assumed to be

α̂k,n = Tq, for Tq ≤ αk,n < Tq+1 . (15)

Then, the BS assigns subcarriers and transmit power
with the knowledge of the power gain α̂k,n: the user with
the highest power gain α̂k,n is chosen on each subcarrier,
and the transmit power on each subcarrier is deter-
mined using the water-filling method [23]. This method
gives the maximum throughput when αk,n = α̂k,n[23].
Figure 3 shows the rate-distortion curves for the two

schemes. In this figure, for a wide range of the average
distortion, the required capacity of the feedback channel
in the rate-distortion limit is about 50-80% of the
threshold-based quantization scheme. However, when
the capacity of the feedback channel is zero (no CSI is
fed back to the BS), both schemes result in the average
distortion of NE[ak, n ] = 1,024.
Figure 4 depicts the outage throughput in terms of

the capacity of the feedback channel. When no CSI is
available at the BS, according to Sections 3.2 and 3.3,
the proposed scheme tends to assign subcarriers ran-
domly to users and allocate equal transmit power gn
on each subcarrier n. In this case, the outage through-
put is N max x log(1+xgT/N)Pr(ak, n ≥ x). For the
threshold-based method, since the decoded power gain
α̂k,n is equal to the knowledge of the lower bound on
the actual power gain as given by Equation 15, the BS
can only set α̂k,n = 0. In this case, no signal is trans-
mitted on subcarriers. At Ck < 400 bps/Hz, the

achieved outage throughput in the rate-distortion limit
is more than twice of the threshold-based method. The
difference between the two schemes decreases for lar-
ger capacity of the feedback channel. When the feed-
back channel’s capacity of each user reaches 6,144 bps/
Hz, the throughput is saturated regardless of any type
of the schemes (could happen when the perfect CSI is
available at the BS). It can also be noted that at gT/N =
30 dB and Ck = 1,024 bps/Hz, the performance gap
between the outage throughput in the rate-distortion
limit and that in the perfect CSI case is within 6%.
Thus, it implies that with limited feedback rate, the
system performance can be close to that of the perfect
CSI one.

5 Conclusions
In this paper, we investigated the outage throughput
maximization for an OFDMA system with finite feed-
back rate over independent Rayleigh fading channels.
First, we derived the RDF for the downlink CSI. This
RDF gives a lower bound on the capacity of the feed-
back channel according to the rate-distortion theory.
Meanwhile, we obtained the test channel that achieves
this RDF. The derived test channel enabled us to formu-
late the resource allocation problem that maximizes the
outage throughput with capacity constraints of feedback
channels. For this problem, we proposed a low-complex-
ity suboptimal algorithm. This algorithm divides the
problem into two subproblems, namely subcarrier and
power allocation problems. Through numerical results,
we found that the proposed suboptimal algorithm has
performance close to the optimum. We also observed
that the outage throughput in the rate-distortion limit
outperforms that with the threshold-based quantization
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method, and with limited feedback rate, the system per-
formance can be close to that with perfect CSI.

Appendix A Proof of Theorem 1
First, we show that the exponential distribution maxi-
mizes the entropy over all distributions with non-nega-
tive support.
Lemma 1. Let the non-negative random variable x

have the mean E[x] = m. Then, the differential entropy
of x is upper bounded byh(x) ≤ log(x̄e), and the equality
is achieved iff x is exponentially distributed, x ~exp(m).
Proof Let f(x) be the probability density function of a

non-negative random variable x satisfying∫ +∞
0 xf (x)dx = m. Let y be an exponentially distributed
random variable with the Probability Density Function g
(y) = exp (-y/m)/m. Then,

h(x) − h(y) =
+∞∫
0

g(y) log g(y)dy −
+∞∫
0

f (x) log f (x)dx

16a=
+∞∫
0

f (y) log g(y)dy −
+∞∫
0

f (x) log f (x)dx

=
+∞∫
0

f (x) log
g(x)
f (x)

dx

16b≤ log
+∞∫
0

f (x)
g(x)
f (x)

dx

= 0,

(A:1)

where (Appendix A.1a) follows from∫ +∞
0 g(y)ydy =

∫ +∞
0 f (y)ydy, and (Appendix A.1b) fol-

lows from the concavity of the function log.
Then, we derive the RDF for an one-dimensional

exponentially distributed source x ~ exp(m).
Lemma 2. Define the RDF of an exponentially distrib-

uted source x ~ exp(m) as

R(D) = inf
E[x−x̂]≤D,x̂≤x

I(x; x̂),

where x̂ is the quantized description of x. Then, the
RDF is given by

R(D) = logmax{m
D
, 1},

and the test channel that achieves this RDF is

x = x̂ + z,

where z is independent of x̂ with z ~ exp(min{D, m}).
Proof In the case D >m , the quantizer need not trans-

mit any information since the the decoded information
can be chosen as

x̂ = 0.

This ensures that the constraints E[x − x̂] ≤ D and
x̂ ≤ x are satisfied. In this case, I(x; x̂) = 0 and z ~ exp(m).
Henceforth, we assume 0 ≤ D ≤ m. We observe that

I(x; x̂) = h(x) − h(x|x̂)
= log(me) − h(x − x̂|x̂)
17a≥ log(me) − h(x − x̂)
17b≥ log(me) − log(De)

= log
m
D
,

(A:2)

where (Appendix A.2a) follows from the fact that con-
ditioning reduces entropy, and (Appendix A.2b) follows
from Lemma 1. The equality in (Appendix A.2a) is
achieved iff z = x − x̂ independent of x̂, and the equality
in (Appendix A.2b) is achieved iff z ~ exp(D).
Now, we are able to prove Theorem 1.
Proof [Proof of Theorem 1] We have

I(Ak; Âk) = h(Ak) − h(Ak|Âk)
18a=

N∑
n=1

h(αk,n) −
N∑
n=1

h(αk,n|Âk)

18b≥
N∑
n=1

h(αk,n) −
N∑
n=1

h(αk,n|α̂k,n)

=
N∑
n=1

I(αk,n; α̂k,n)

18c≥
N∑
n=1

Rk,n(Dk,n)

=
N∑
n=1

logmax
{

λk,n

Dk,n
, 1

}
,

(A:3)

where Dk,n = E[αk,n − α̂k,n], (Appendix A.3a) follows
from the fact that the components of Ak are uncorre-
lated, (Appendix A.3b) from the fact that conditioning
reduces entropy, and (Appendix A.3c) follows from
Lemma 2. The equality (Appendix A.3c) is achieved iff
αk,n = α̂k,n + zk,n with zk, n ~ exp(min{lk, n, Dk, n}) is inde-
pendent of α̂k,n, and the equality in (Appendix A.3b) is
achieved iff f (Ak|Âk) =

∏N
n=1 f (αk,n|α̂k,n). From this, it

also implies that Zk = (zk,1, ..., zk, N)
T has uncorrelated

components.
The problem of finding the RDF of Ak now reduces to

min Dk,n

N∑
n=1

logmax
{

λk,n

Dk,n
, 1

}

subject to
N∑
n=1

Dk,n = Dk.

The Lagrangian of the problem is

L =
N∑
n=1

logmax
{

λk,n

Dk,n
, 1

}
+ μ

(
N∑
n=1

Dk,n − Dk

)

= −μDk +
N∑
n=1

(
logmax

{
λk,n

Dk,n
, 1

}
+ μDk,n

)
,
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where μ is the Lagrangian multiplier. We can find the
optimal Dk, n that minimizes L by differentiating L with
respect to Dk, n,

∂L
∂Dk,n

=

⎧⎨
⎩− log e

Dk,n
+ μ 0 ≤ Dk,n ≤ λk,n

μ Dk,n > λk,n

Thus, we conclude the optimal Dk, n is

Dk,n = min{θ ,λk,n},
where θ = log e/μ.. Recalling the constraint ∑n Dk, n =

Dk, we obtain the result of the Theorem 1.

Appendix B Proof of Theorem 2
Proof First, we show that ln To

k,n(γn, α̂k,n, x) in Equation 6
is concave in x Î (0, + ∞). From Equation 6, we express
ln To

k,n(γn, α̂k,n, x) as

ln To
k,n(γn, α̂k,n, x) = min

{
ln log(1 + xγn) ,

−x − α̂k,n

νk,n
+ ln log(1 + xγn)

}
.

Since log(1 + xgn) is concave in x and log(1 + xgn) > 0
for x > 0, gn ≥ 0, lnlog(1 + xgn) is concave in x for i > 0,
gn ≥ 0 [[20], p.86]. Since non-negative weighted sum
and pointwise infimum preserve the concavity [[20],
Section 3.2], ln To

k,n(γn, α̂k,n, x) is concave in x.
Also, note that To

k,n(γn, α̂k,n, x) in Equation 6 satisfies
limx→0 To

k,n(γn, α̂k,n, x) = 0, and
limx→+∞ To

k,n(γn, α̂k,n, x) = 0. Thus, there exists a globally
unique x that maximizes To

k,n(γn, α̂k,n, x).
Differentiating To

k,n(γn, α̂k,n, x) with respect to x for
x > α̂k,n and setting equal to zero, we have

∂To
k,n(γn, α̂k,n, x)

∂x
= e

−
x − α̂k,n

νk,n log e
(

γn

1 + xγn
− ln(1 + xγn)

νk,n

)
= 0.

That is,

x =
eW(γnνk,n) − 1

γn
.

For 0 ≤ x ≤ α̂k,n, T
o
k,n(γn, α̂k,n, x) is maximized when

x = α̂k,n. Thus, we have the solution in 7.
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