719 research outputs found

    Thomson backscattering in combined two laser and magnetic field

    Full text link
    The Thomson backscattering of an electron moving in combined fields is studied by a dynamically assisted mechanism. The combined fields are composed of two co-propagating laser fields and a magnetic field, where the first laser field is strong and low-frequency while the second is weak and high-frequency, relatively. The dependence of fundamental frequency of emission on the ratio of incident laser high-to-low frequency is presented and the spectrum of backscattering is obtained. It is found that, with a magnetic field, the peak of the spectrum and the corresponding radiation frequency are significantly larger in case of two-laser than that in case of only one laser. They are also improved obviously as the frequency of the weak laser field. Another finding is the nonlinear correlation between the emission intensity of the backscattering and the intensity of the weak laser field. These results provide a new possibility to adjust and control the spectrum by changing the ratios of frequency and intensity of the two laser fields.Comment: 13 pages, 4 figure

    Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei

    Full text link
    The effects of ΛˉΛˉω\bar\Lambda\bar\Lambda\omega-tensor coupling on the spin symmetry of Λˉ\bar{\Lambda} spectra in Λˉ\bar{\Lambda}-nucleus systems have been studied with the relativistic mean-field theory. Taking 12^{12}C+Λˉ\bar{\Lambda} as an example, it is found that the tensor coupling enlarges the spin-orbit splittings of Λˉ\bar\Lambda by an order of magnitude although its effects on the wave functions of Λˉ\bar{\Lambda} are negligible. Similar conclusions has been observed in Λˉ\bar{\Lambda}-nucleus of different mass regions, including 16^{16}O+Λˉ\bar{\Lambda}, 40^{40}Ca+Λˉ\bar{\Lambda} and 208^{208}Pb+Λˉ\bar{\Lambda}. It indicates that the spin symmetry in anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures

    The significance of Notch ligand expression in the peripheral blood of children with hand, foot and mouth disease (HFMD)

    Get PDF
    BACKGROUND: Hand, foot and mouth disease (HFMD), a virus-induced infectious disease that usually affects infants and children, has an increased incidence in China in recent years. This study attempted to investigate the role of the Notch signaling pathway in the pathogenesis of HFMD. METHODS: Eighty-two children diagnosed with HFMD were enrolled into this study. The HFMD group was further divided into the uncomplicated HFMD and HFMD with encephalitis groups. The control group included 40 children who underwent elective surgery for treatment of inguinal hernias. RESULTS: Children with HFMD displayed significantly reduced CD3+, CD3+CD4+ and CD3+CD8+ cell subsets, but substantially enhanced CD3−CD19+ cell subset (p < 0.05 versus control subjects). The expression levels of Notch ligands Dll1 and Dll4 in the peripheral blood of the HFMD group were significantly higher than those in the control group (p < 0.05). There were statistically significant differences in CD3+, CD3+CD4+ and CD3−CD19+ cell subsets, but not in Notch ligand expression, between the uncomplicated HFMD and HFMD with encephalitis groups. Dll4 expression in HFMD subjects correlated negatively with the CD3+ and CD3+CD8+ cell subsets (p < 0.05), but positively with the CD3−CD19+ cell subset (p < 0.05). Furthermore, Dll4 expression in HFMD with encephalitis subjects correlated positively with total white blood cell (WBC) counts and total protein contents in cerebrospinal fluid (CSF) (p < 0.05). CONCLUSIONS: The Notch ligand Dll4 exhibits a strong correlation with the CD3+, CD3+CD8+ and CD3−CD19+ cell subsets in children with HFMD, indicating that the Notch signaling may be involved in the development of HFMD by affecting the number and status of peripheral lymphocytes

    M dwarf Stars - The By-Product of X-Ray Selected AGN Candidates

    Full text link
    X-ray loud M dwarfs are a major source of by-product (contamination) in the X-ray band of the multiwavelength quasar survey (MWQS). As a by-product, the low dispersion spectra of 22 M dwarfs are obtained in which the spectra of 16 sources are taken for the first time. The spectral types and distance of the sample are given based on spectral indices CaH2, CaH3, and TiO5. The parameter {\zeta}TiO/CaH is calculated to make the metallicity class separation among dwarfs, subdwarfs and extreme subdwarfs. We also discuss the distributions in the diagrams of Log(Lx/Lbol) versus spectral type and infrared colors.Comment: 10 pages, 26 figures, accepted for publication in Research in Astronomy and Astrophysics (RAA
    corecore