35 research outputs found

    Engineering diverse fatty acid compositions of phospholipids in Escherichia coli

    Get PDF
    Bacterial fatty acids (FAs) are an essential component of the cellular membrane and are an important source of renewable chemicals as they can be converted to fatty alcohols, esters, ketones, and alkanes, and used as biofuels, detergents, lubricants, and commodity chemicals. Most prior FA bioconversions have been performed on the carboxylic acid group. Modification of the FA hydrocarbon chain could substantially expand the structural and functional diversity of FA-derived products. Additionally, the effects of such modified FAs on the growth and metabolic state of their producing cells are not well understood. Here we engineer novel Escherichia coli phospholipid biosynthetic pathways, creating strains with distinct FA profiles enriched in ω7-unsaturated FAs (ω7-UFAs, 75%), Δ5-unsaturated FAs (Δ5-UFAs, 60%), cyclopropane FAs (CFAs, 55%), internally-branched FAs (IBFAs, 40%), and Δ5,ω7-double unsaturated FAs (DUFAs, 46%). Although bearing drastically different FA profiles in phospholipids, UFA, CFA, and IBFA enriched strains display wild-type-like phenotypic profiling and growth. Transcriptomic analysis reveals DUFA production drives increased differential expression and the induction of the fur iron starvation transcriptional cascade, but higher TCA cycle activation compared to the UFA producing strain. This likely reflects a slight cost imparted for DUFA production, which resulted in lower maximum growth in some, but not all, environmental conditions. The IBFA-enriched strain was further engineered to produce free IBFAs, releasing 96 mg/L free IBFAs from 154 mg/L of the total cellular IBFA pool. This work has resulted in significantly altered FA profiles of membrane lipids in E. coli, greatly increasing our understanding of the effects of FA structure diversity on the transcriptome, growth, and ability to react to stress

    Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk

    Get PDF
    Dragline spider silk is among the strongest and toughest bio-based materials, capable of outperforming most synthetic polymers and even some metal alloys.1,2,3,4 These properties have gained spider silk a growing list of potential applications that, coupled with the impracticalities of spider farming, have driven a decades-long effort to produce recombinant spider silk proteins (spidroins) in engineered heterologous hosts.2 However, these efforts have so far been unable to yield synthetic silk fibers with mechanical properties equivalent to natural spider silk, largely due to an inability to stably produce highly repetitive, high molecular weight (MW) spidroins in heterologous hosts.1,5 Here we address these issues by combining synthetic biology techniques with split intein (SI)- mediated ligation for the bioproduction of spidroins with unprecedented MW (556 kDa), containing 192 repeat motifs of the Nephila clavipes MaSp1 dragline spidroin. Fibers spun from these synthetic spidroins display ultimate tensile strength (), modulus (E), extensibility (), and toughness (UT) of 1.03 +/- 0.11 GPa, 13.7 +/- 3.0 GPa, 18 +/- 6%, and 114 +/- 51 MJ/m3, respectively-equivalent to the performance of natural N. clavipes dragline silk.6 This work demonstrates for the first time that microbially produced synthetic silk fibers can match the performance of natural silk fibers by all common metrics (, E, , UT), providing a more dependable source of high-strength fibers to replace natural spider silks for mechanically demanding applications. Furthermore, our biosynthetic platform can be potentially expanded for the assembly and production of other protein-based materials with high MW and repetitive sequences that have so far been impossible to synthesize by genetic means alone

    Whole-genome sequencing of <em>Oryza brachyantha</em> reveals mechanisms underlying <em>Oryza</em> genome evolution

    Get PDF
    The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza

    How Internet Marketing Tools Influence Customer Relationship Management : An analysis based on webinar

    No full text
    The purpose of this dissertation is to present how online marketing tools influence customer relationship management (CRM) in a Business to Business (B to B) company. After reviewing the relevant theories, a frame of reference for client relations through the internet is selected from the research of Bauer et al (2002). Six key characteristics of internet were discussed in order to reveal their impact on CRM. Meanwhile, three variables, which are commitment, satisfaction, and trust, are explored to measure the concept CRM. Both qualitative and quantitative research are used in this study, through analyzing the company’s internal documents, the authors come to a conclusion that the internet tool could improve customer satisfaction, commitment and trust, so as to improve customer relationship. Key words: Internet marketing Tools, Customer Relationship Management, Commitment, Satisfaction, Trust, Webinar, Multiple metho

    Biosynthesis, regulation, and engineering of microbially produced branched biofuels

    No full text
    Abstract The steadily increasing demand on transportation fuels calls for renewable fuel replacements. This has attracted a growing amount of research to develop advanced biofuels that have similar physical, chemical, and combustion properties with petroleum-derived fossil fuels. Early generations of biofuels, such as ethanol, butanol, and straight-chain fatty acid-derived esters or hydrocarbons suffer from various undesirable properties and can only be blended in limited amounts. Recent research has shifted to the production of branched-chain biofuels that, compared to straight-chain fuels, have higher octane values, better cold flow, and lower cloud points, making them more suitable for existing engines, particularly for diesel and jet engines. This review focuses on several types of branched-chain biofuels and their immediate precursors, including branched short-chain (C4–C8) and long-chain (C15–C19)-alcohols, alkanes, and esters. We discuss their biosynthesis, regulation, and recent efforts in their overproduction by engineered microbes

    Engineering of a newly isolated Bacillus tequilensis BL01 for poly-γ-glutamic acid production from citric acid

    No full text
    Abstract Background Poly γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications. For glutamic acid-independent strains, the titer of γ-PGA is too low to meet the industrial demand. In this study, we isolated a novel γ-PGA-producing strain, Bacillus tequilensis BL01, and multiple genetic engineering strategies were implemented to improve γ-PGA production. Results First, the one-factor-at-a-time method was used to investigate the influence of carbon and nitrogen sources and temperature on γ-PGA production. The optimal sources of carbon and nitrogen were sucrose and (NH4)2SO4 at 37 °C, respectively. Second, the sucA, gudB, pgdS, and ggt genes were knocked out simultaneously, which increased the titer of γ-PGA by 1.75 times. Then, the titer of γ-PGA increased to 18.0 ± 0.3 g/L by co-overexpression of the citZ and pyk genes in the mutant strain. Furthermore, the γ-PGA titer reached 25.3 ± 0.8 g/L with a productivity of 0.84 g/L/h and a yield of 1.50 g of γ-PGA/g of citric acid in fed-batch fermentation. It should be noted that this study enables the synthesis of low (1.84 × 105 Da) and high (2.06 × 106 Da) molecular weight of γ-PGA by BL01 and the engineering strain. Conclusion The application of recently published strategies to successfully improve γ-PGA production for the new strain B. tequilensis BL01 is reported. The titer of γ-PGA increased 2.17-fold and 1.32-fold compared with that of the wild type strain in the flask and 5 L fermenter. The strain shows excellent promise as a γ-PGA producer compared with previous studies. Meanwhile, different molecular weights of γ-PGA were obtained, enhancing the scope of application in industry

    Fast Screening of Protein Tyrosine Phosphatase 1B Inhibitor from Salvia miltiorrhiza Bge by Cell Display-Based Ligand Fishing

    No full text
    Salvia miltiorrhiza Bge is a medicinal plant (Chinese name &ldquo;Danshen&rdquo;) widely used for the treatment of hyperglycemia in traditional Chinese medicine. Protein tyrosine phosphatase 1B (PTP1B) has been recognized as a potential target for insulin sensitizing for the treatment of diabetes. In this work, PTP1B was displayed at the surface of E. coli cells (EC-PTP1B) to be used as a bait for fishing of the enzyme&rsquo;s inhibitors present in the aqueous extract of S. miltiorrhiza. Salvianolic acid B, a polyphenolic compound, was fished out by EC-PTP1B, which was found to inhibit PTP1B with an IC50 value of 23.35 &micro;M. The inhibitory mechanism of salvianolic acid B was further investigated by enzyme kinetic experiments and molecular docking, indicating salvianolic acid B was a non-competitive inhibitor for PTP1B (with Ki and Kis values of 31.71 &micro;M and 20.08 &micro;M, respectively) and its binding energy was &minus;7.89 kcal/mol. It is interesting that in the comparative work using a traditional ligand fishing bait of PTP1B-immobilized magnetic nanoparticles (MNPs-PTP1B), no ligands were extracted at all. This study not only discovered a new PTP1B inhibitor from S. miltiorrhiza which is significant to understand the chemical basis for the hypoglycemic activity of this plant, but also indicated the effectiveness of cell display-based ligand fishing in screening of active compounds from complex herbal extracts

    Decoding Roles of Exosomal lncRNAs in Tumor-Immune Regulation and Therapeutic Potential

    No full text
    Exosomes are nanovesicles secreted into biofluids by various cell types and have been implicated in different physiological and pathological processes. Interestingly, a plethora of studies emphasized the mediating role of exosomes in the bidirectional communication between donor and recipient cells. Among the various cargoes of exosomes, long non-coding RNAs (lncRNAs) have been identified as crucial regulators between cancer cells and immune cells in the tumor microenvironment (TME) that can interfere with innate and adaptive immune responses to affect the therapeutic efficiency. Recently, a few major studies have focused on the exosomal lncRNA-mediated interaction between cancer cells and immune cells infiltrated into TME. Nevertheless, a dearth of studies pertains to the immune regulating role of exosomal lncRNAs in cancer and is still in the early stages. Comprehensive mechanisms of exosomal lncRNAs in tumor immunity are not well understood. Herein, we provide an overview of the immunomodulatory function of exosomal lncRNAs in cancer and treatment resistance. In addition, we also summarize the potential therapeutic strategies toward exosomal lncRNAs in TME

    Decoding Roles of Exosomal lncRNAs in Tumor-Immune Regulation and Therapeutic Potential

    No full text
    Exosomes are nanovesicles secreted into biofluids by various cell types and have been implicated in different physiological and pathological processes. Interestingly, a plethora of studies emphasized the mediating role of exosomes in the bidirectional communication between donor and recipient cells. Among the various cargoes of exosomes, long non-coding RNAs (lncRNAs) have been identified as crucial regulators between cancer cells and immune cells in the tumor microenvironment (TME) that can interfere with innate and adaptive immune responses to affect the therapeutic efficiency. Recently, a few major studies have focused on the exosomal lncRNA-mediated interaction between cancer cells and immune cells infiltrated into TME. Nevertheless, a dearth of studies pertains to the immune regulating role of exosomal lncRNAs in cancer and is still in the early stages. Comprehensive mechanisms of exosomal lncRNAs in tumor immunity are not well understood. Herein, we provide an overview of the immunomodulatory function of exosomal lncRNAs in cancer and treatment resistance. In addition, we also summarize the potential therapeutic strategies toward exosomal lncRNAs in TME
    corecore