201 research outputs found

    Permanent magnets including undulators and wigglers

    Full text link
    After a few historic remarks on magnetic materials we introduce the basic definitions related to permanent magnets. The magnetic properties of the most common materials are reviewed and the production processes are described. Measurement techniques for the characterization of macroscopic and microscopic properties of permanent magnets are presented. Field simulation techniques for permanent magnet devices are discussed. Today, permanent magnets are used in many fields. This article concentrates on the applications of permanent magnets in accelerators starting from dipoles and quadrupoles on to wigglers and undulators.Comment: 45 pages, presented at the CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 200

    Novel Magnet Production Technique Used for an Elliptically Polarizing Undulator

    Get PDF
    A common problem for elliptically polarizing undulators EPUs is that the magnetic forces give a mechanical deflection in the magnet holder construction when changing the undulator phase. Gluing horizontally and vertically magnetized blocks together can increase the mechanical stability of the magnet holders. The gluing process of pairs of magnetized magnet blocks is time consuming, expensive and difficult to carry out with high positional precision. A novel magnet production technique has been developed where un magnetized pairs of blocks are glued together before magnetization. The large number of parts, the time for assembly, and the cost of the EPU can be reduced with the novel magnet production technique. The novel magnet production method has been used for a 2.6 m long EPU of APPLE II type, which has been built in house at the MAX IV Laboratory. The frame for the EPU is made of cast iron in order to get a small mechanical deformation when changing phase in the inclined mode. The paper includes detailed descriptions of the novel magnet production technique, including measurements of the magnetization, and the new EP

    Propagation of Coherent Light Pulses with PHASE

    Get PDF
    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel Kirchhoff integral stationary phase approximation which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested among them are the parallelization in a multi core environment and the parallelization on a cluste

    Hall Probe Bench for Cryogenic In Vacuum Undulator

    Get PDF
    The Helmholtz Zentrum Berlin HZB builds a 2m long in vacuum Hall probe measuring bench for the characterization of several in vacuum cryogenic undulators currently under development. Aceurate local magnetic measurements need a positioning control of about 5 Jlll. Fabrication tolerances and potentially strong temperature gradients require an active correction of the Hall probe movement along a straight line. The HZBbench employs a system of Iaser interferometers and positionsensitive detectors, which are used in a feed back loop for the Hall probe position and orientatio

    Development of Advanced Magnet Structures for Cryogenic In Vacuum Permanent Magnet Undulators

    Get PDF
    Short period undulators and in particular in vacuum cryogenic permanent magnet undulators are the upcoming technique for FEL radiators, because they permit a significant reduction of linac and undulator length. For achieving high photon energies with low electron energies short period lengths, e.g. below lOmm permanent magnet structures are superior, due to their high surface current density of 16 kA cm as compared to electromagnetic or even superconducting devices. The geom.etrical to1erances scale with the period length. This requires new fabrication techniques and structure designs, particularly for sub cm period lengths. Salutions for these demands will be presented and results from a first prototype using various new technologies such as compound poles will be discussed and compared with common approache

    Cryogenic permanent magnet and superconducting undulators

    Get PDF

    A Canted Double Undulator System with a Wide Energy Range for EMIL

    Get PDF
    At BESSY II a canted double undulator system for the Energy Materials In situ Laboratory EMIL is under construction. The energy regime is covered with two undulators, an APPLE II undulator for the soft and a cryogenic permanent magnet undulator CPMU 17 for the hard photons. The layout and the performance of the undulators are presented in detail. The minimum of the vertical betatron function is shifted to the center of the CPMU 17. The neighboring quadrupoles and an additional quadrupole between the undulators control the vertical betatron function. Prior to the undulator installation a testing chamber with four movable vertical scrapers has been implemented at the CPMU 17 location. Utilizing the scrapers the new asymmetric lattice optics will be tested and optimize

    Phase Shimming of the BESSY II in Vacuum APPLE II Undulator IVUE32 with Transverse Slides

    Get PDF
    The phase shimming of an in vacuum APPLE II undulator requests a precise slit adjustment between neighbouring magnet rows besides the conventional gap tuning such as in an in vacuum undulator. In an out of vacuum APPLE II, the slit between the magnet rows is precisely defined via a stiff needle bearing, which is located closely to the critical volume. In the APPLE II design, the slit adjustment must be done from outside of the vacuum chamber far away from the electron beam. In this article, we discuss the tolerances of systematic phase errors of various types and their relaxation with emittance and energy spread. We developed specific transverse slides for the slit adjustment to achieve full flexibility in phase tuning. We discuss their capability in slit adjustment precision in the readily assembled and evacuated system. The discussions are based on spectral and FEM simulation

    Modifications to the Machine Optics of BESSY II Necessitated by the EMIL Project

    Get PDF
    The Helmholtz Zentrum Berlin and the Max Planck Society are going to build a new dedicated X ray beam line at the synchrotron light source BESSY II which will be used for analyzing materials for renewable energy generation. The new large scale project has been dubbed EMIL. In this document we present the modifications to the machine optics and to what extent these changes affect the performance of BESSY I

    The Energy Materials in-Situ Laboratory Berlin (EMIL) at BESSY II

    Get PDF
    The Helmholtz Center Berlin (HZB) and the Max-Planck Society (MPG) strengthen their research in renewable energies with the implementation of the joint Energy Material in-Situ Lab Berlin (EMIL) at the third generation light source BESSY II. The new facility is dedicated to the in-situ and in-system x-ray analysis of materials and devices for photovoltaic applications, (photo-) catalytic processes, energie conversion and storage. To obtain a comprehensive understanding of the involved materials, spectroscopic methods with x-rays from the soft- up to the hard x-ray regime reveal an almost complete picture of their chemical and electronic properties. The contribution presents the layout of the x-ray beamlines and their performance in terms of photon flux, energy resolution and spot sizes
    • …
    corecore