72 research outputs found

    The native architecture of a photosynthetic membrane

    Get PDF
    In photosynthesis, the harvesting of solar energy and its subsequent conversion into a stable charge separation are dependent upon an interconnected macromolecular network of membrane-associated chlorophyll–protein complexes. Although the detailed structure of each complex has been determined, the size and organization of this network are unknown. Here we show the use of atomic force microscopy to directly reveal a native bacterial photosynthetic membrane. This first view of any multi-component membrane shows the relative positions and associations of the photosynthetic complexes and reveals crucial new features of the organization of the network: we found that the membrane is divided into specialized domains each with a different network organization and in which one type of complex predominates. Two types of organization were found for the peripheral light-harvesting LH2 complex. In the first, groups of 10–20 molecules of LH2 form light-capture domains that interconnect linear arrays of dimers of core reaction centre (RC)–light-harvesting 1 (RC–LH1–PufX) complexes; in the second they were found outside these arrays in larger clusters. The LH1 complex is ideally positioned to function as an energy collection hub, temporarily storing it before transfer to the RC where photochemistry occurs: the elegant economy of the photosynthetic membrane is demonstrated by the close packing of these linear arrays, which are often only separated by narrow 'energy conduits' of LH2 just two or three complexes wide

    Self-assembled monolayer of light-harvesting core complexes of photosynthetic bacteria on an amino-terminated ITO electrode

    Get PDF
    Light-harvesting antenna core (LH1-RC) complexes isolated from Rhodospirillum rubrum and Rhodopseudomonas palustris were successfully self-assembled on an ITO electrode modified with 3-aminopropyltriethoxysilane. Near infra-red (NIR) absorption, fluorescence, and IR spectra of these LH1-RC complexes indicated that these LH1-RC complexes on the electrode were stable on the electrode. An efficient energy transfer and photocurrent responses of these LH1-RC complexes on the electrode were observed upon illumination of the LH1 complex at 880 nm

    Nanospiral Formation by Droplet Drying: One Molecule at a Time

    Get PDF
    We have created nanospirals by self-assembly during droplet evaporation. The nanospirals, 60–70 nm in diameter, formed when solvent mixtures of methanol and m-cresol were used. In contrast, spin coating using only methanol as the solvent produced epitaxial films of stripe nanopatterns and using only m-cresol disordered structure. Due to the disparity in vapor pressure between the two solvents, droplets of m-cresol solution remaining on the substrate serve as templates for the self-assembly of carboxylic acid molecules, which in turn allows the visualization of solution droplet evaporation one molecule at a time

    The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov

    Get PDF
    BACKGROUND: There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. METHODOLOGY/PRINCIPAL FINDINGS: Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71(T). Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71(T) cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3-2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71(T) could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. CONCLUSIONS/SIGNIFICANCE: In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71(T) we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an obligately aerobic, photosynthetic metabolism constitute a unique phenotype within the class Gammaproteobacteria, so that it is justified to propose a new genus and species, Congregibacter litoralis gen. nov, sp. nov., represented by the type strain KT71(T) ( = DSM 17192(T) = NBRC 104960(T))

    Atomic Force Microscopy of bacterial photosynthetic systems: A new model for Native Membrane Organization

    Get PDF
    The main goal of this thesis was to investigate the supramolecular architecture of a photosynthetic membrane from Rhodobacter sphaeroides purple bacteria cells. This is extremely timely, since we now know all of the structures of photosynthetic pigment-protein LH and RC complexes, ATP-synthase and bacterial cytochrome bc1 complexes. We employed tapping mode AFM imaging in liquid in order to obtain and analyze high-resolution topographs of photosynthetic membrane proteins in their native lipid bilayer environment

    Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles

    No full text
    Background: Microparticles (MPs) are small vesicles released from cells of different origin, bearing surface antigens from parental cells. Elevated numbers of blood MPs have been reported in (cardio) vascular disorders and cancer. Most of these MPs are derived from platelets. Objectives: To investigate whether atomic force microscopy (AFM) can be used to detect platelet-derived MPs and to define their size distribution. Methods: Blood MPs isolated from seven blood donors and three cancer patients were immobilized on a modified mica surface coated with an antibody against CD41 prior to AFM imaging. AFM was performed in liquid-tapping mode to detect CD41-positive MPs. In parallel, numbers of CD41-positive MPs were measured using flow cytometry. Mouse IgG(1) isotype control was used as a negative control. Results: AFM topography measurements of the number of CD41-positive MPs were reproducible (coefficient of variation = 16%). Assuming a spherical shape of unbound MPs, the calculated diameter of CD41-positive MPs (d(sph)) ranged from 10 to 475 nm (mean: 67.5 +/- 26.5 nm) and from 5 to 204 nm (mean: 51.4 +/- 14.9 nm) in blood donors and cancer patients, respectively. Numbers of CD41-positive MPs were 1000-fold higher than those measured by flow cytometry (3-702 x 10(9) L-1 plasma vs. 11-626 x 10(6) L-1 plasma). After filtration of isolated MPs through a 0.22-mu m filter, CD41-positive MPs were still detectable in the filtrate by AFM (mean d(sph): 37.2 +/- 11.6 nm), but not by flow cytometry. Conclusions: AFM provides a novel method for the sensitive detection of defined subsets of MPs in the nanosize range, far below the lower limit of what can be measured by conventional flow cytometry

    Structural and Optical Properties of LH2-Complexes

    No full text
    corecore