5 research outputs found

    The Arabidopsis SHORTROOT network coordinates shoot apical meristem development with auxin-dependent lateral organ initiation

    No full text
    Plants produce new organs post-embryonically throughout their entire life cycle. This is due to stem cells present in the shoot and root apical meristems, the SAM and RAM, respectively. In the SAM, stem cells are located in the central zone where they divide slowly. Stem cell daughters are displaced laterally and enter the peripheral zone, where their mitotic activity increases and lateral organ primordia are formed. How the spatial arrangement of these different domains is initiated and controlled during SAM growth and development, and how sites of lateral organ primordia are determined in the peripheral zone is not yet completely understood. We found that the SHORTROOT (SHR) transcription factor together with its target transcription factors SCARECROW (SCR), SCARECROW-LIKE23 (SCL23) and JACKDAW (JKD), promotes formation of lateral organs and controls shoot meristem size. SHR, SCR, SCL23, and JKD are expressed in distinct, but partially overlapping patterns in the SAM. They can physically interact and activate expression of key cell cycle regulators such as CYCLIND6;1 (CYCD6;1) to promote the formation of new cell layers. In the peripheral zone, auxin accumulates at sites of lateral organ primordia initiation and activates SHR expression via the auxin response factor MONOPTEROS (MP) and auxin response elements in the SHR promoter. In the central zone, the SHR-target SCL23 physically interacts with the key stem cell regulator WUSCHEL (WUS) to promote stem cell fate. Both SCL23 and WUS expression are subject to negative feedback regulation from stem cells through the CLAVATA signaling pathway. Together, our findings illustrate how SHR-dependent transcription factor complexes act in different domains of the shoot meristem to mediate cell division and auxin dependent organ initiation in the peripheral zone, and coordinate this activity with stem cell maintenance in the central zone of the SAM

    The Arabidopsis SHORTROOT network coordinates shoot apical meristem development with auxin-dependent lateral organ initiation

    No full text
    Plants produce new organs post-embryonically throughout their entire life cycle. This is due to stem cells present in the shoot and root apical meristems, the SAM and RAM, respectively. In the SAM, stem cells are located in the central zone where they divide slowly. Stem cell daughters are displaced laterally and enter the peripheral zone, where their mitotic activity increases and lateral organ primordia are formed. How the spatial arrangement of these different domains is initiated and controlled during SAM growth and development, and how sites of lateral organ primordia are determined in the peripheral zone is not yet completely understood. We found that the SHORT-ROOT (SHR) transcription factor together with its target transcription factors SCARECROW (SCR), SCARECROW-LIKE23 (SCL23) and JACKDAW (JKD), promotes formation of lateral organs and controls shoot meristem size. SHR, SCR, SCL23, and JKD are expressed in distinct, but partially overlapping patterns in the SAM. They can physically interact and activate expression of key cell cycle regulators such as CYCLIND6;1 (CYCD6;1) to promote the formation of new cell layers. In the peripheral zone, auxin accumulates at sites of lateral organ primordia initiation and activates SHR expression via the auxin response factor MONOPTEROS (MP) and auxin response elements in the SHR promoter. In the central zone, the SHR-target SCL23 physically interacts with the key stem cell regulator WUSCHEL (WUS) to promote stem cell fate. Both SCL23 and WUS expression are subject to negative feedback regulation from stem cells through the CLAVATA signaling pathway. Together, our findings illustrate how SHR-dependent transcription factor complexes act in different domains of the shoot meristem to mediate cell division and auxin dependent organ initiation in the peripheral zone, and coordinate this activity with stem cell maintenance in the central zone of the SAM.Research in the lab of RĂŒdiger Simon is supported by the DFG through the Cluster of Excellence on Plant Sciences (CEPLAS, EXC2048), Next-Plant, SFB1208, CRC1208 and RTG CSCS. Research in the lab of Crisanto Gutierrez is supported by the Grant ERC-2018-AdG_833617 (European Union, H2020). Grant RTI2018-094793-B-I00 (from Spanish Ministry of Science and Innovation, and FEDER)

    TPLATE complex dependent endocytosis is required for shoot apical meristem maintenance by attenuating CLAVATA1 signaling

    No full text
    Abstract Endocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to sense and rapidly respond to both endogenous and environmental stimuli. The evolutionarily ancient TPLATE complex (TPC) plays an essential role in clathrin-mediated endocytosis (CME) in Arabidopsis plants. Knockout or strong knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause very mild developmental deviations. Here, we took advantage of the recently reported partially functional TPLATE allele, WDXM2, to investigate a role for TPC-dependent endocytosis in receptor-mediated signalling. We discovered that reduced TPC-dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 (CLV3) peptide signalling. This hypersensitivity correlated with the abundance of the CLV3 receptor protein kinase CLAVATA1 (CLV1) at the plasma membrane. Genetic analysis and live-cell imaging revealed that TPC-dependent regulation of CLV3-dependent internalization of CLV1 from the plasma membrane is required for CLV3 function in the shoot. Our findings provide evidence that clathrin-mediated endocytosis of CLV1 is a mechanism to dampen CLV3-mediated signaling during plant development

    TPLATE complex‐dependent endocytosis attenuates CLAVATA1 signaling for shoot apical meristem maintenance

    No full text
    International audienceEndocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to rapidly respond to stimuli. The evolutionary ancient TPLATE complex (TPC) plays an essential role in endocytosis in Arabidopsis plants. Knockout or knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause mild developmental deviations. Here, we took advantage of the partially functional TPLATE allele, WDXM2, to investigate a role for TPC‐dependent endocytosis in receptor‐mediated signaling. We discovered that reduced TPC‐dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 peptide signaling. This hypersensitivity correlated with the abundance of the CLAVATA3 receptor protein kinase CLAVATA1 at the plasma membrane. Genetic and biochemical analysis as well as live‐cell imaging revealed that TPC‐dependent regulation of CLAVATA3‐dependent internalization of CLAVATA1 from the plasma membrane is required for shoot stem cell homeostasis. Our findings provide evidence that TPC‐mediated endocytosis and degradation of CLAVATA1 is a mechanism to dampen CLAVATA3‐mediated signaling during plant development
    corecore