339 research outputs found

    Extending Continuum Models for Atom Probe Simulation

    Full text link
    This work describes extensions to existing level-set algorithms developed for application within the field of Atom Probe Tomography (APT). We present a new simulation tool for the simulation of 3D tomographic volumes, using advanced level set methods. By combining narrow-band, B-Tree and particle-tracing approaches from level-set methods, we demonstrate a practical tool for simulating shape changes to APT samples under applied electrostatic fields, in three dimensions. This work builds upon our previous studies by allowing for non-axially symmetric solutions, with minimal loss in computational speed, whilst retaining numerical accuracy

    DF-Fit : A robust algorithm for detection of crystallographic information in Atom Probe Tomography data

    Full text link
    We report on a new algorithm for detection of crystallographic information in 3D, as retained in Atom Probe Tomography (APT), with improved robustness and signal detection performance. The algorithm is underpinned by 1D distribution functions, as per existing algorithms, but eliminates an unnecessary parameter as compared to current methods. By examining traditional distribution functions in an automated fashion in real space, rather than using Fourier transform approaches, we utilise an error metric based upon the expected value for a spatially random distribution for detecting crystallography. We show cases where the metric is able to successfully obtain orientation information, and show that it can function with high levels of additive and displacive background noise. We additionally compare this metric to Fourier transform methods, showing fewer artefacts when examining simulated datasets. An extension of the approach is used to aid the automatic detection of high-quality data regions within an entire dataset, albeit with a large increase in computational cost. This extension is demonstrated on acquired Aluminium and Tungsten APT datasets, and shown to be able to discern regions of the data which have relatively improved spatial data quality. Finally, this program has been made available for use in other laboratories undertaking their own analyses

    On the effect of Ti on Oxidation Behaviour of a Polycrystalline Nickel-based Superalloy

    Get PDF
    Titanium is commonly added to nickel superalloys but has a well-documented detrimental effect on oxidation resistance. The present work constitutes the first atomistic-scale quantitative measurements of grain boundary and bulk compositions in the oxide scale of a current generation polycrystalline nickel superalloy performed through atom probe tomography. Titanium was found to be particularly detrimental to oxide scale growth through grain boundary diffusion

    Atom probe characterisation of segregation driven Cu and Mn-Ni-Si co-precipitation in neutron irradiated T91 tempered-martensitic steel

    Full text link
    The T91 grade and similar 9Cr tempered-martensitic steels (also known as ferritic-martensitic) are leading candidate structural alloys for fast fission nuclear and fusion power reactors. At low temperatures (300 to 400 ∘^\circC) neutron irradiation hardens and embrittles these steels, therefore it is important to investigate the origin of this mode of life limiting property degradation. T91 steel specimens were separately neutron irradiated to 2.14 dpa at 327 ∘^\circC and 8.82 dpa at 377 ∘^\circC in the Idaho National Laboratory Advanced Test Reactor. Atom probe tomography was used to investigate the segregation driven formation of Mn-Ni-Si-rich (MNSPs) and Cu-rich (CRP) co-precipitates. The precipitates increase in size and, slightly, in volume fraction at the higher irradiation temperature and dose, while their corresponding compositions were very similar, falling near the Si(Mn,Ni) phase field in the Mn-Ni-Si projection of the Fe-based quaternary phase diagram. While the structure of the precipitates has not been characterized, this composition range is distinctly different than that of the typically cited G-phase. The precipitates are composed of CRP with MNSP appendages. Such features are often observed in neutron irradiated reactor pressure vessel (RPV) steels. However, the Si, Ni, Mn, P and Cu solutes concentrations are lower in the T91 than in typical RPV steels. Thus, in T91 precipitation primarily takes place in solute segregated regions of line and loop dislocations. These results are consistent with the model for radiation induced segregation driven precipitation of MNSPs proposed by Ke et al. Cr-rich alpha prime (α\alpha') phase formation was not observed.Comment: Pre-print (not peer reviewed

    Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    Get PDF
    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour

    Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials.

    Get PDF
    Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of implantation damage induced by sample preparation. In the reconstructed InAlN layer Ga implantation was demonstrated for the standard "clean-up" voltage (5 kV), but this was significantly reduced by using a lower voltage (e.g., 1 kV). The characteristics of APT data from the desorption maps to the mass spectra and measured chemical compositions were examined within the GaN buffer layer underlying the InAlN layer in both pulsed laser and pulsed voltage modes. The measured Ga content increased monotonically with increasing laser pulse energy and voltage pulse fraction within the examined ranges. The best results were obtained at very low laser energy, with the Ga content close to the expected stoichiometric value for GaN and the associated desorption map showing a clear crystallographic pole structure.F.T. would like to thank David A. Nicol for his kind help. The European Research Council has provided financial support under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 279361 (MACONS).This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/S143192761500042

    Multi-scale microscopy of Reactive Sintered Boride (RSB) neutron shielding materials

    Get PDF
    Protecting superconducting magnets from neutron irradiation is critically important when demonstrating the utility of spherical tokamaks. Reactive Sintered Borides (RSBs) are promising radiation-dense materials and excellent attenuators of slow (< 10 keV) neutrons. No experimental radiation data yet exists on RSBs, hence the need to establish a baseline of RSB microstructure prior to studies on radiation response and aging of RSBs in an active fusion environment. This work investigates the structure and composition of RSB materials over 5 orders of magnitude. SEM, TEM-EDX, atom probe tomography (APT) and XRD were evaluated the microstructure of a selection of RSB compositions. Sintered RSBs were observed to be dominated by FeWB/FeW2B2 bodies, mixed tungsten borides and WC as the key hard phases present. TEM and SEM detected a complex Fe-rich alloy with near-pure Fe interstitial phases. Key findings from this work are that (i) carbon balance is as significant as boron content when considering microstructure and phase presence;(ii) FeWB/FeW2B2 growth is highly temperature dependant and (iii) dense, coherent RSB formation is contingent on the total boron and carbon atomic percentage (B + C)at% is 40% < x ≤ 50%
    • …
    corecore