11 research outputs found

    Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase

    Get PDF
    The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM ICin vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50-60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80-90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K

    The hVPS34-SGK3 pathway counteracts inhibition of the PI3K-Akt to maintain mTORC1 and tumour growth

    Get PDF
    We explore mechanisms that enable cancer cells to tolerate PI3K or Akt inhibitors. Prolonged treatment of breast cancer cells with PI3K or Akt inhibitors leads to increased expression and activation of a kinase termed SGK3 that is related to Akt. Under these conditions, SGK3 is controlled by hVps34 that generates PtdIns(3)P, which binds to the PX domain of SGK3 promoting phosphorylation and activation by its upstream PDK1 activator. Furthermore, under conditions of prolonged PI3K/Akt pathway inhibition, SGK3 substitutes for Akt by phosphorylating TSC2 to activate mTORC1. We characterise 14h, a compound that inhibits both SGK3 activity and activation in vivo, and show that a combination of Akt and SGK inhibitors induced marked regression of BT‐474 breast cancer cell‐derived tumours in a xenograft model. Finally, we present the kinome‐wide analysis of mRNA expression dynamics induced by PI3K/Akt inhibition. Our findings highlight the importance of the hVps34‐SGK3 pathway and suggest it represents a mechanism to counteract inhibition of PI3K/Akt signalling. The data support the potential of targeting both Akt and SGK as a cancer therapeutic

    PDK1-SGK1 signaling sustains AKT-independent mTORC1 activation and confers resistance to PI3Kα inhibition

    Get PDF
    SummaryPIK3CA, which encodes the p110α subunit of PI3K, is frequently mutated and oncogenic in breast cancer. PI3Kα inhibitors are in clinical development and despite promising early clinical activity, intrinsic resistance is frequent among patients. We have previously reported that residual downstream mTORC1 activity upon treatment with PI3Kα inhibitors drives resistance to these agents. However, the mechanism underlying this phenotype is not fully understood. Here we show that in cancer cells resistant to PI3Kα inhibition, PDK1 blockade restores sensitivity to these therapies. SGK1, which is activated by PDK1, contributes to the maintenance of residual mTORC1 activity through direct phosphorylation and inhibition of TSC2. Targeting either PDK1 or SGK1 prevents mTORC1 activation, restoring the antitumoral effects of PI3Kα inhibition in resistant cells

    Binding to syntenin-1 defines a new mode of ubiquitin-based interactions regulated by phosphorylation.

    No full text
    Syntenin-1 is a PDZ domain-containing adaptor that controls trafficking of transmembrane proteins including those associated with tetraspanin-enriched microdomains. We describe the interaction of syntenin-1 with ubiquitin through a novel binding site spanning the C terminus of ubiquitin, centered on Arg(72), Leu(73), and Arg(74). A conserved LYPSL sequence in the N terminus, as well as the C-terminal region of syntenin-1, are essential for binding to ubiquitin. We present evidence for the regulation of this interaction through syntenin-1 dimerization. We have also established that syntenin-1 is phosphorylated downstream of Ulk1, a serine/threonine kinase that plays a critical role in autophagy and regulates endocytic trafficking. Importantly, Ulk1-dependent phosphorylation of Ser(6) in the LYPSL prevents the interaction of syntenin-1 with ubiquitin. These results define an unprecedented ubiquitin-dependent pathway involving syntenin-1 that is regulated by Ulk1

    Dictyostelium discoideum nucleoside diphosphate kinase C plays a negative regulatory role in phagocytosis, macropinocytosis and exocytosis

    Get PDF
    Nucleoside diphosphate kinases (NDPKs) are ubiquitous phosphotransfer enzymes responsible for producing most of the nucleoside triphosphates except for ATP. This role is important for the synthesis of nucleic acids and proteins and the metabolism of sugars and lipids. Apart from this housekeeping role NDPKs have been shown to have many regulatory functions in diverse cellular processes including proliferation and endocytosis. Although the protein has been shown to have a positive regulatory role in clathrin- and dynamin-mediated micropinocytosis, its roles in macropinocytosis and phagocytosis have not been studied. The additional non-housekeeping roles of NDPK are often independent of enzyme activity but dependent on the expression level of the protein. In this study we altered the expression level of NDPK in the model eukaryotic organism Dictyostelium discoideum through antisense inhibition and overexpression. We demonstrate that NDPK levels affect growth, endocytosis and exocytosis. In particular we find that Dictyostelium NDPK negatively regulates endocytosis in contrast to the positive regulatory role identified in higher eukaryotes. This can be explained by the differences in types of endocytosis that have been studied in the different systems - phagocytosis and macropinocytosis in Dictyostelium compared with micropinocytosis in mammalian cells. This is the first report of a role for NDPK in regulating macropinocytosis and phagocytosis, the former being the major fluid phase uptake mechanism for macrophages, dendritic cells and other (non dendritic) cells exposed to growth factors

    The CD63-syntenin-1 complex controls post-endocytic trafficking of oncogenic human papillomaviruses

    Get PDF
    Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking

    A genetic interaction between NDPK and AMPK in Dictyostelium discoideum that affects motility, growth and development

    Get PDF
    Many of the expanding roles of nucleoside diphosphate kinase have been attributed to its ability to interact with other proteins. One proposal is an interaction with the cellular energy sensor AMP-activated protein kinase, and here, we apply the simple eukaryotic organism, Dictyostelium discoideum as a test model. Stable cotransformants were created in which NDPK expression was knocked down by antisense inhibition, and AMPK activity was chronically elevated either by constitutive overexpression of its active, catalytic domain (AMPKαT) or as a result of mitochondrial dysfunction (created by antisense inhibition of expression of a mitochondrial chaperone protein, chaperonin 60). To investigate a biochemical interaction, transformants were created which contained constructs expressing FLAG-NDPK and hexahistidine-tagged full-length AMPK or AMPKαT. The protein extract from these transformants was used in coimmunoprecipitations. Knock down of NDPK expression suppressed the phenotypic defects that are caused by AMPK hyperactivity resulting either from overexpression of AMPKαT or from mitochondrial dysfunction. These included rescue of defects in slug phototaxis, fruiting body morphology and growth in a liquid medium. Coimmunoprecipitation experiments failed to demonstrate a biochemical interaction between the two proteins. The results demonstrate a genetic interaction between NDPK and AMPK in Dictyostelium in that NDPK is required for the phenotypic effects of activated AMPK. Coimmunoprecipitations suggest that this interaction is not mediated by a direct interaction between the two proteins

    mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer

    No full text
    Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#termsActivation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation,. Here we show that mTORC1 regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. Through the use of integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identified alterations in tumours impacting on the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation was validated in murine and human cancer specimens. AMD1 was upregulated in prostate cancer specimens with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibited a predominant decrease in AMD1 immunoreactivity that was associated to a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program
    corecore