164 research outputs found

    Natalizumab induced blood eosinophilia: A retrospective pharmacovigilance cohort study and review of the literature.

    Get PDF
    OBJECTIVE To describe frequency of natalizumab related eosinophilia and clinical symptoms of eosinophilic disease in our monocentric cohort. METHODS Comparison of clinical characteristics of 115 natalizumab treated and 116 untreated RRMS patients and review of literature. RESULTS 38% of natalizumab treated patients had eosinophilia, which occurred significantly more frequently compared to untreated MS patients (3%, p-value<0.001). In symptomatic patients, mean eosinophil counts were significantly higher than in asymptomatic patients and symptoms developed within one year. DISCUSSION Eosinophilia is a side effect of natalizumab and mostly asymptomatic. However, few patients develop within one year after start of natalizumab an eosinophilic disease as severe side effect

    Preplasma characterization at PHELIX

    Get PDF

    High-temperature plasma of Ge generated by the PHELIX laser

    Get PDF

    A laser-driven proton beamline at GSI

    Get PDF

    Measurement of the angle, temperature and flux of fast electrons emitted from intense laser-solid interactions

    Get PDF
    High-intensity laser-solid interactions generate relativistic electrons, as well as high-energy (multi-MeV) ions and X-rays. The directionality, spectra and total number of electrons that escape atarget-foil is dependent on the absorption, transport and rear-side sheath conditions. Measuring the electrons escaping the target will aid in improving our understanding of these absorption processes and the rear-surface sheath fields that retard the escaping electrons and accelerate ions via the target normal sheath acceleration (TNSA) mechanism. A comprehensive Geant4 study was performed to help analyse measurements made with a wrap-around diagnostic that surrounds the target and uses differential filtering with a FUJI-film image plate detector. The contribution of secondary sources such as X-rays and protons to the measured signal have been taken into account to aid in the retrieval of the electron signal. Angular and spectral data from a high-intensity laser-solid interaction are presented and accompanied by simulations. The total number of emitted electrons has been measured as 2.6 × 1013 with an estimated total energy of 12 ± 1 J from a 100 mu;m Cu target with140 J of incident laser energy during a 4 × 1020 W cm-2 interaction

    Guided electromagnetic discharge pulses driven by short intense laser pulses:Characterization and modeling

    Get PDF
    Strong electromagnetic pulses (EMPs) are generated from intense laser interactions with solid-density targets and can be guided by the target geometry, specifically through conductive connections to the ground. We present an experimental characterization by time- and spatial-resolved proton deflectometry of guided electromagnetic discharge pulses along wires including a coil, driven by 0.5 ps, 50 J, 1019 W/cm2 laser pulses. Proton-deflectometry allows us to time-resolve first the EMP due to the laser-driven target charging and then the return EMP from the ground through the conductive target stalk. Both EMPs have a typical duration of tens of ps and correspond to currents in the kA-range with electric-field amplitudes of multiple GV/m. The sub-mm coil in the target rod creates lensing effects on probing protons due to both magnetic- and electric-field contributions. This way, protons of the 10 MeV-energy range are focused over cm-scale distances. Experimental results are supported by analytical modeling and high-resolution numerical particle-in-cell simulations, unraveling the likely presence of a surface plasma, in which parameters define the discharge pulse dispersion in the non-linear propagation regime.</p

    Role of lattice structure and low temperature resistivity on fast electron beam filamentation in carbon

    Get PDF
    The influence of low temperature (eV to tens-of-eV) electrical resistivity on the onset of the filamentation instability in fast-electron transport is investigated in targets comprising of layers of ordered (diamond) and disordered (vitreous) carbon. It is shown experimentally and numerically that the thickness of the disordered carbon layer influences the degree of filamentation of the fast-electron beam. Strong filamentation is produced if the thickness is of the order of 60 μm or greater, for an electron distribution driven by a sub-picosecond, mid-1020 Wcm-2 laser pulse. It is shown that the position of the vitreous carbon layer relative to the fast-electron source (where the beam current density and background temperature are highest) does not have a strong effect because the resistive filamentation growth rate is high in disordered carbon over a wide range of temperatures up to the Spitzer regime
    corecore