140 research outputs found

    Endothelin receptors as novel targets in tumor therapy

    Get PDF
    The endotelin (ET) axis, that includes ET-1, ET-2, ET-3, and the ET receptors, ET(A )and ET(B), plays an important physiological role, as modulator of vasomotor tone, tissue differentiation and development, cell proliferation, and hormone production. Recently, investigations into the role of the ET axis in mitogenesis, apoptosis inhibition, invasiveness, angiogenesis and bone remodeling have provided evidence of the importance of the ET-1 axis in cancer. Data suggest that ET-1 participates in the growth and progression of a variety of tumors such as prostatic, ovarian, renal, pulmonary, colorectal, cervical, breast carcinoma, Kaposi's sarcoma, brain tumors, melanoma, and bone metastases. ET-1 receptor antagonists beside providing ideal tools for dissecting the ET axis at molecular level have demonstrated their potential in developing novel therapeutic opportunity. The major relevance of ET(A )receptor in tumor development has led to an extensive search of highly selective antagonists. Atrasentan, one of such antagonists, is orally bioavailable, has suitable pharmacokinetic and toxicity profiles for clinical use. Preliminary data from clinical trials investigating atrasentan in patients with prostate cancer are encouraging. This large body of evidence demonstrates the antitumor activity of endothelin receptor antagonists and provides a rationale for the clinical evaluation of these molecules alone and in combination with cytotoxic drugs or molecular inhibitors leading to a new generation of anticancer therapies targeting endothelin receptors

    The endothelin A receptor and epidermal growth factor receptor signaling converge on β-catenin to promote ovarian cancer metastasis

    Get PDF
    Aims: Endothelin A receptor (ETAR) and epidermal growth factor receptor (EGFR) cross-talk enhances the metastatic potential of epithelial ovarian cancer (EOC) cells activating different pathways, including β-catenin signalling. Here, we evaluated β-catenin as one of ETAR/EGFR downstream pathway in the invasive behaviour of EOC cells and their therapeutic potential to co-target ETAR and EGFR. Main methods: The phosphorylation status and interactions of different proteins were analysed by immunoblotting and immunoprecipitation. Reporter activity and RT-PCR was used for evaluation of β-catenin transcriptional activity and gene expression. Functional effects were evaluated by gelatin zymography and cell invasion assays. An orthotopic model of metastatic human EOC in mice was used for in vivo studies. Key findings: In EOC cell lines, ET-1 induced Src-dependent EGFR transactivation, causing tyrosine (Y) phosphorylation of β-catenin at the residue Y654, its dissociation from E-cadherin complexes and the accumulation as an active form. This pool of Tyr-β-catenin relocalised to the nucleus promoting its transcriptional activity, and the expression of its target genes, such as MMP-2. At functional level, ET-1 and EGFR circuits enhanced protease activity and cell invasion. All these effects were significantly inhibited by the ETAR antagonist, zibotentan, or EGFR inhibitor, gefitinib, and are completely blocked by co-addition of both drugs. In vivo, zibotentan treatment significantly inhibited metastases, associated with reduced expression and activation of MMPs and active β-catenin, especially when combined with gefitinib. Significance: Altogether these findings provide additional support to the potential use of ETAR and EGFR blockade as a new therapeutic opportunity for EOC treatment. © 2012 Elsevier Inc

    Nuclear β-arrestin1 is a critical cofactor of hypoxia-inducible factor-1α signaling in endothelin-1-induced ovarian tumor progression

    Get PDF
    Hypoxia-inducible factor-1α (HIF-1α) mediates the response to hypoxia or other stimuli, such as growth factors, including endothelin-1 (ET-1), to promote malignant progression in numerous tumors. The importance of cofactors that regulate HIF-1α signalling within tumor is not well understood. Here we elucidate that ET-1/ET(A) receptor (ET(A)R)-induced pathway physically and functionally couples the scaffold protein β-arrestin1 (β-arr1) to HIF-1α signalling. In epithelial ovarian cancer (EOC) cells, ET-1/ET(A)R axis induced vascular-endothelial growth factor (VEGF) expression through HIF-1α nuclear accumulation. In these cells, activation of ET(A)R by ET-1, by mimicking hypoxia, promoted the nuclear interaction between β-arr1 and HIF-1α and the recruitment of p300 acetyltransferase to hypoxia response elements on the target gene promoters, resulting in enhanced histone acetylation, and HIF-1α target gene transcription. Indeed, β-arr1-HIF-1α interaction regulated the enhanced expression and release of downstream targets, such as ET-1 and VEGF, required for tumor cell invasion and pro-angiogenic effects in endothelial cells. These effects were abrogated by β-arr1 or HIF-1α silencing or by pharmacological treatment with the dual ET-1 receptor antagonist macitentan. Interestingly, ET(A)R/β-arr1 promoted the self-amplifying HIF-1α-mediated transcription of ET-1 that sustained a regulatory circuit involved in invasive and angiogenic behaviors. In a murine orthotopic model of metastatic human EOC, treatment with macitentan, or silencing of β-arr1, inhibits intravasation and metastasis formation. Collectively, these findings reveal the interplay of β-arr1 with HIF-1α in the complexity of ET-1/ET(A)R signalling, mediating epigenetic modifications directly involved in the metastatic process, and suggest that targeting ET-1-dependent β-arr1/HIF-1α pathway by using macitentan may impair EOC progression

    β-Arrestin 1 is required for endothelin-1-induced NF-κB activation in ovarian cancer cells

    Get PDF
    Aims In epithelial ovarian cancer (EOC), activation of endothelin-1 (ET-1)/endothelin A receptor (ETAR) signalling is linked to many tumor promoting effects, such as proliferation, angiogenesis, invasion and metastasis. These effects are dependent by the activation of critical signalling pathways, such as MAPK, Akt, and β-catenin, through specific cytosolic and nuclear scaffolding functions of β-arrestin 1 (β-arr1). Here, we have assessed the potential role of ET-1/ETAR in promoting NF-κB signalling in EOC cells through β-arr-1 recruitment. Main methods We used cultured HEY EOC cells cultured in the presence or absence of ET-1 and the ETAR antagonist BQ123. The phosphorylation of p65 and Iκ-Bα was evaluated by immunoblotting analysis. The interaction between p65 and β-arr1 was evaluated by immunoprecipitation experiments in nuclear extracts. NF-κB promoter activity was evaluated by transfection with NF-κB-driven luciferase reporter construct. Assessment of the function of β-arr1 was achieved by β-arr1 silencing with shRNA and expression of β-arr1-FLAG expression vector. Key findings In EOC cells, ET-1 promotes the phosphorylation of p65 subunit and the cytoplasmic inhibitor IκB that in turn led to increased NF-κB transcriptional activity. These effects were inhibited by the use of BQ123, as well as by β-arr-1 silencing, suggesting that ET-1 through ETAR promotes the recruitment of β-arr1 to regulate NF-κB signalling. Moreover, the nuclear physical interaction between p65 and β-arr1 indicates a nuclear function of β-arr-1 in ETAR-driven NF-κB transcriptional activity. Significance Altogether these findings reveal a previously unrecognized pathway that depends on β-arr1 to sustain NF-κB signalling in response to ETAR activation in ovarian cancer

    New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis

    Get PDF
    Tumor cells acquire invasive and metastatic behavior by sensing changes in the localization and activation of signaling pathways, which in turn determine changes in actin cytoskeleton. The core-scaffold machinery associated to β-arrestin (β-arr) is a key mechanism of G-protein coupled receptors (GPCR) to achieve spatiotemporal specificity of different signaling complexes driving cancer progression. Within different cellular contexts, the scaffold proteins β-arr1 or β-arr2 may now be considered organizers of protein interaction networks involved in tumor development and metastatic dissemination. Studies have uncovered the importance of the β-arr engagement with a growing number of receptors, signaling molecules, cytoskeleton regulators, epigenetic modifiers, and transcription factors in GPCR-driven tumor promoting pathways. In many of these molecular complexes, β-arrs might provide a physical link to active dynamic cytoskeleton, permitting cancer cells to adapt and modify the tumor microenvironment to promote the metastatic spread. Given the complexity and the multidirectional β-arr-driven signaling in cancer cells, therapeutic targeting of specific GPCR/β-arr molecular mechanisms is an important avenue to explore when considering future new therapeutic options. The focus of this review is to integrate the most recent developments and exciting findings of how highly connected components of β-arr-guided molecular connections to other pathways allow precise control over multiple signaling pathways in tumor progression, revealing ways of therapeutically targeting the convergent signals in patients

    Regulation of extracellular matrix degradation and metastatic spread by IQGAP1 through endothelin-1 receptor signalling in ovarian cancer.

    Get PDF
    Abstract The invasive phenotype of serous ovarian cancer (SOC) cells is linked to the formation of actin-based protrusions, invadopodia, operating extracellular matrix (ECM) degradation and metastatic spread. Growth factor receptors might cause engagement of integrin-related proteins, like the polarity protein IQ-domain GTPase-activating protein 1 (IQGAP1), to F-actin core needed for invadopodia functions. Here, we investigated whether IQGAP1 forms a signalosome with endothelin-1 (ET-1)/β-arrestin1 (β-arr1) network, as signal-integrating module for adhesion components, cytoskeletal remodelling and ECM degradation. In SOC cells, ET-1 receptor (ET-1R) activation, besides altering IQGAP1 expression and localization, coordinates the binding of IQGAP1 with β-arr1, representing a "hotspot" for ET-1R-induced invasive signalling. We demonstrated that the molecular interaction of IQGAP1 with β-arr1 affects relocalization of focal adhesion components, as vinculin, and cytoskeleton dynamics, through the regulation of invadopodia-related pathways. In particular, ET-1R deactivates Rac1 thereby promoting RhoA/C activation for the correct functions of invasive structures. Silencing of either IQGAP1 or β-arr1, or blocking ET-1R activation with a dual antagonist macitentan, prevents matrix metalloproteinase (MMP) activity, invadopodial function, transendothelial migration and cell invasion. In vivo, targeting ET-1R/β-arr1 signalling controls the process of SOC metastasis, associated with reduced levels of IQGAP1, as well as other invadopodia effectors, such as vinculin, phospho-cortactin and membrane type 1-MMP. High expression of ET A R/β-arr1/IQGAP1 positively correlates with poor prognosis, validating the clinical implication of this signature in early prognosis of SOC. These data establish the ET-1R-driven β-arr1/IQGAP1 interaction as a prerequisite for the dynamic integration of pathways in fostering invadopodia and metastatic process in human SOC

    Endothelin-1 cooperates with hypoxia to induce vascular-like structures through vascular endothelial growth factor-C, -D and -A in lymphatic endothelial cells.

    Get PDF
    Abstract Aims Lymphangiogenesis refers to the formation of new lymphatic vessels and is thought to constitute conduits for the tumor cells to metastasize. We previously demonstrated that endothelin (ET)-1 through its binding with ETB receptor (ET B R) expressed on lymphatic endothelial cells (LEC), induced cell growth and invasiveness. Since vascular endothelial growth factor (VEGF)-A/-C/-D, and hypoxia play key role in lymphatic differentiation, in this study we investigated the involvement of these growth factors and hypoxia in ET-1-induced lymphangiogenesis. Main methods Real time PCR and ELISA were used to quantify VEGF-A/-C/-D. LEC morphological differentiation was analyzed by tube formation assay on Matrigel. Key findings Hypoxia, as well as ET-1, induced an increase in VEGF-A/-C and -D expression that was reduced in the presence of a selective ET B R antagonist, BQ788, and enhanced when ET-1 was administered under hypoxic conditions. We analyzed the role of hypoxia on LEC morphological differentiation, and found that hypoxia increased the formation of vascular-like structures on Matrigel and that in combination with ET-1 this effect was markedly enhanced. The use of specific antibodies neutralizing VEGF-A, or recombinant VEGFR-3/(Flt-4)/Fc that block VEGF-C/-D, inhibited the effect of ET-1 as well that of hypoxia. Significance These results demonstrated that ET-1 and hypoxia act, at list in part, through VEGF to induce lymphangiogenic events and that these two stimuli may cooperate to induce VEGF-A/-C/-D expression and lymphatic differentiation. These data further support the role of ET-1 as potent lymphangiogenic factor that relies on the interplay with hypoxic microenvironment and with VEGF family members

    Endothelin-1 decreases gap junctional intercellular communication by inducing phosphorylation of connexin 43 in human ovarian carcinoma cells

    Get PDF
    Endothelin-1 (ET-1) is overexpressed in ovarian carcinoma and acts as an autocrine factor selectively through the ETA receptor (ETAR) to promote tumor cell proliferation, survival, neovascularization, and invasiveness. Loss of gap junctional intercellular communication (GJIC) is critical for tumor progression by allowing the cells to escape growth control. Exposure of HEY and OVCA 433 ovarian carcinoma cell lines to ET-1 led to a 50–75% inhibition in intercellular communication and to a decrease in the connexin 43 (Cx43)-based gap junction plaques. To investigate the phosphorylation state of Cx43, ovarian carcinoma cell lysates were immunoprecipitated and transient tyrosine phosphorylation of Cx43 was detected in ET-1-treated cells. BQ 123, a selective ETAR antagonist, blocked the ET-1-induced Cx43 phosphorylation and cellular uncoupling. Gap junction closure was prevented by tyrphostin 25 and by the selective c-Src inhibitor, PP2. Furthermore, the increased Cx43 tyrosine phosphorylation was correlated with ET-1-induced increase of c-Src activity, and PP2 suppressed the ET-1-induced Cx43 tyrosine phosphorylation, indicating that inhibition of Cx43-based GJIC is mainly mediated by the Src tyrosine kinase pathway. In vivo, the inhibition of human ovarian tumor growth in nude mice induced by the potent ETAR antagonist, ABT-627, was associated with a reduction of Cx43 phosphorylation. These findings indicate that the signaling mechanisms involved in GJIC disruption on ovarian carcinoma cells depend on ETAR activation, which leads to the Cx43 tyrosine phosphorylation mediated by c-Src, suggesting that ETAR blockade may contribute to the control of ovarian carcinoma growth and progression also by preventing the loss of GJIC

    Endothelin-1 axis fosters YAP-induced chemotherapy escape in ovarian cancer

    Get PDF
    The majority of ovarian cancer (OC) patients recur with a platinum-resistant disease. OC cells activate adaptive resistance mechanisms that are only partially described. Here we show that OC cells can adapt to chemotherapy through a positive-feedback loop that favors chemoresistance. In platinum-resistant OC cells we document that the endothelin-1 (ET-1)/endothelin A receptor axis intercepts the YAP pathway. This cross-talk occurs through the LATS/RhoA/actin-dependent pathway and contributes to prevent the chemotherapy-induced apoptosis. Mechanistically, β-arrestin1 (β-arr1) and YAP form a complex shaping TEAD-dependent transcriptional activity on the promoters of YAP target genes, including EDN1, which fuels a feed-forward signaling circuit that sustains a platinum-tolerant state. The FDA approved dual ET-1 receptor antagonist macitentan in co-therapy with cisplatin sensitizes resistant cells to the platinum-based therapy, reducing their metastatic potential. Furthermore, high ETAR/YAP gene expression signature is associated with a poor platinum-response in OC patients. Collectively, our findings identify in the networking between ET-1 and YAP pathways an escape strategy from chemotherapy. ET-1 receptor blockade interferes with such adaptive network and enhances platinum-induced apoptosis, representing a promising therapeutic opportunity to restore drug sensitivity in OC patients
    corecore