41 research outputs found

    Innovative approaches for Monte Carlo simulations of orientational effects in crystals and their experimental verification

    Get PDF
    Interaction of either charged or neutral particles with crystals is an area of science under development. Coherent effects of ultra‐relativistic particles in crystals allow manipulating particle trajectories thanks to the strong electrical field generated between atomic planes and axes. Coherent effects for interaction of particles with aligned structures always exploited opportunity furnished by the most advanced calculators and calculation methods of the current period. In this thesis two Monte Carlo codes were developed for the simulation of coherent interactions between charged particles and crystals. The Monte Carlo codes were tested for comparison with the experimental results of various experiments on channeling and related topics. The first code, named DYNECHARM++, is completely object‐oriented and deals with numerical integration of the equation of motion to determine the trajectory of a particle in straight and bent complex crystalline structures. The second code addresses the implementation of coherent effects, such as planar channeling and volume reflection to Geant4, which is a widespread used toolkit for the simulation of the passage of particles through matter. Experiments on coherent interactions were carried out at the H8 and H4 external lines of the SPS at CERN and at the MAMI of the Johannes Gutenberg University of Mainz. At the H8 line experiments of coherent interaction in "exotic" atomic structure and crystal configuration were worked out. Within the UA9 experiment, a procedure for the on‐beam characterization of the strips for the SPS crystal collimation experiment was developed at the H8 line. At the H4 line and at MAMI the interaction of negative particles with bent crystals was studie

    Steering efficiency of a ultrarelativistic proton beam in a thin bent crystal

    Get PDF
    Crystals with small thickness along the beam exhibit top performance for steering particle beams through planar channeling. For such crystals, the effect of nuclear dechanneling plays an important role because it affects their efficiency. We addressed the problem through experimental work carried out with 400 GeV/c protons at fixed-target facilities of CERN-SPS. The dependence of efficiency vs. curvature radius has been investigated and compared favourably to the results of modeling. A realistic estimate of the performance of a crystal designed for LHC energy including nuclear dechanneling has been achieved.Comment: 16 pages, 6 figure

    Relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal

    Get PDF
    An investigation on the mechanism of relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal was carried out at the extracted line H8 from CERN Super Proton Synchrotron. The experimental results were critically compared to computer simulations, showing a good agreement. We identified a necessary condition for the exploitation of axial confinement or its relaxation for particle beam manipulation in high-energy accelerators. We introduce the idea of using a short bent crystal, aligned with one of its main axis to the beam direction, as a beam steerer or a beam splitter with adjustable intensity in the field of particle accelerators. In particular, in the latter case, a complete relaxation from axial confinement to planar channeling takes place, resulting in beam splitting into the two strongest skew planar channels.An investigation on the mechanism of relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal was carried out at the extracted line H8 from CERN Super Proton Synchrotron. The experimental results were critically compared to computer simulations, showing a good agreement. We identified a necessary condition for the exploitation of axial confinement or its relaxation for particle beam manipulation in high-energy accelerators. We introduce the idea of using a short bent crystal, aligned with one of its main axis to the beam direction, as a beam steerer or a beam splitter with adjustable intensity in the field of particle accelerators. In particular, in the latter case, a complete relaxation from axial confinement to planar channeling takes place, resulting in beam splitting into the two strongest skew planar channels

    Enhancement of the Inelastic Nuclear Interaction Rate in Crystals via Antichanneling

    Get PDF
    The interaction rate of a charged particle beam with the atomic nuclei of a target varies significantly if the target has a crystalline structure. In particular, under specific orientations of the target with respect to the incident beam, the probability of inelastic interaction with nuclei can be enhanced with respect to the unaligned case. This effect, which can be named antichanneling, can be advantageously used in the cases where the interaction between beam and target has to be maximized. Here we propose to use antichanneling to increase the radioisotope production yield via cyclotron. A dedicated set of experimental measurements was carried out at the INFN Legnaro Laboratories with the AN2000 and CN accelerators to prove the existence of the antichanneling effect. The variation of the interaction yield at hundreds of keV to MeV energies was observed by means of sapphire and indium phosphide crystals, achieving an enhancement of the interaction rate up to 73% and 25%, respectively. Such a result may pave the way to the development of a novel type of nozzle for the existing cyclotrons, which can exploit crystalline materials as targets for radioisotope production, especially to enhance the production rate for expensive prime materials with minor upgrades of the current instrumentation

    Observation of channeling for 6500 GeV/c protons in the crystal assisted collimation setup for LHC

    Get PDF
    Two high-accuracy goniometers equipped with two bent silicon crystals were installed in the betatron cleaning insertion of the CERN Large Hadron Collider (LHC) during its long shutdown. First beam tests were recently performed at the LHC with 450 GeV/c and 6500 GeV/c stored proton beams to investigate the feasibility of beam halo collimation assisted by bent crystals. For the first time channeling of 6500 GeV/c protons was observed in a particle accelerator. A strong reduction of beam losses due to nuclear inelastic interactions in the aligned crystal in comparison with its amorphous orientation was detected. The loss reduction value was about 24. Thus, the results show that deflection of particles by a bent crystal due to channeling is effective for this record particle energy.peer-reviewe

    Strong reduction of the off-momentum halo in crystal assisted collimation of the SPS beam

    Get PDF
    A study of crystal assisted collimation has been continued at the CERN SPS for different energies of stored beams using 120 GeV/. c and 270 GeV/. c protons and Pb ions with 270 GeV/. c per charge. A bent silicon crystal used as a primary collimator deflected halo particles using channeling and directing them into the tungsten absorber. A strong correlation of the beam losses in the crystal and off-momentum halo intensity measured in the first high dispersion (HD) area downstream was observed. In channeling conditions, the beam loss rate induced by inelastic interactions of particles with nuclei is significantly reduced in comparison with the non-oriented crystal. A maximal reduction of beam losses in the crystal larger than 20 was observed with 270 GeV/. c protons. The off-momentum halo intensity measured in the HD area was also strongly reduced in channeling conditions. The reduction coefficient was larger than 7 for the case of Pb ions. A strong loss reduction was also detected in regions of the SPS ring far from the collimation area. It was shown by simulations that the miscut angle between the crystal surface and its crystallographic planes doubled the beam losses in the aligned crystal.peer-reviewe
    corecore