143 research outputs found

    One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    Get PDF
    The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing

    Microwave-assisted synthesis of a MK2 inhibitor by Suzuki-Miyaura coupling for study in Werner syndrome cells

    Get PDF
    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells

    Microwave-assisted Bohlmann–Rahtz synthesis of highly-substituted 2-aminonicotinates

    Get PDF
    Microwave irradiation of 2-carbethoxyacetamidine and an ethynyl ketone under acidic or basic conditions in ethanol at 150 °C for 1.5 h facilitated Bohlmann-Rahtz pyridine synthesis to give highly-substituted ethyl 2 aminonicotinates with total regiocontrol and in reasonable to excellent yield, following purification by immobiliza tion upon an acidic resin

    Microwave-assisted synthesis of 3-aminobenzo[b]thiophene scaffolds for the preparation of kinase inhibitors

    Get PDF
    Microwave irradiation of 2-halobenzonitriles and methyl thioglycolate in the presence of triethylamine in DMSO at 130 °C provides rapid access to 3-aminobenzo[b]thiophenes in 58–96% yield. This transformation has been applied in the synthesis of the thieno[2,3-b]pyridine core motif of LIMK1 inhibitors, the benzo[4,5]thieno[3,2-e][1,4]diazepin-5(2H)-one scaffold of MK2 inhibitors and a benzo[4,5]thieno[3,2-d]pyrimidin-4-one inhibitor of the PIM kinases

    Bohlmann-Rahtz cyclodehydration of aminodienones to pyridines using N-iodosuccinimide

    Get PDF
    Cyclodehydration of Bohlmann-Rahtz aminodienone intermediates using N-iodosuccinimide as a Lewis acid proceeds at low temperature under very mild conditions to give the corresponding 2,3,6-trisubstituted pyridines in high yield and with total regiocontrol

    The effect of small-molecule inhibition of MAPKAPK2 on cell ageing phenotypes of fibroblasts from human Werner syndrome

    Get PDF
    Fibroblasts derived from the progeroid Werner syndrome (WS) show reduced replicative lifespan and a “stressed” morphology, both phenotypes being alleviated by using the p38 MAP kinase inhibitor SB203580. Because p38 is a major hub for the control of stress-signalling pathways we were interested in examining the possible role for downstream kinases in order to refine our understanding of the role of p38 signalling in regulation of WS cell growth. To this end we treated WS and normal fibroblasts with MK2 inhibitors to determine whether MK2 inhibition would affect either the growth or morphology of WS cells. The first inhibitor, 7,8-dihydroxy-2,4-diamino-3- cyanobenzopyranopyridine (inhibitor 2), resulted in inhibition of WS cell growth and had no effect on morphology, effects that occurred below the level needed to inhibit MK2 and thus suggestive of inhibitor toxicity. The second inhibitor, 2-(2-quinolin-3-ylpyridin-4-yl)-1,5,6,7-tetrahydro-4H-pyrrolo-[3,2-c]pyridin-4-one (CMPD16), resulted in a significant extension of WS fibroblast replicative capacity compared to normal cells. In addition, CMPD16 reverted the WS cellular morphology to that seen in normal dermal fibroblasts. These data suggest that MK2 activity plays a substantial role in proliferation control in WS cells. CMPD16 was not as effective in cellular lifespan extension as SB203580, however, suggesting that, although MK2 is a downstream kinase involved in cell cycle arrest, other p38 targets may play a role. Alternatively, as CMPD16 is toxic to cell growth at levels just above those that extend lifespan, it is possible that the therapeutic window is too small. However, as CMPD16 does show significant effects in WS fibroblasts, this acts as proof-of-principle for the efforts to design and synthesise improved MK2 inhibitors. As MK2 is involved in inflammatory processes and inflammation plays a major role in WS phenotypes, these data suggest MK2 as a potential therapeutic target for the treatment of Werner syndrome

    Effect of flecainide derivatives on sarcoplasmic reticulum calcium release suggests a lack of direct action on the cardiac ryanodine receptor

    Get PDF
    Background and Purpose Flecainide is a use-dependent blocker of cardiac Na+ channels. Mechanistic analysis of this block showed that the cationic form of flecainide enters the cytosolic vestibule of the open Na+ channel. Flecainide is also effective in the treatment of catecholaminergic polymorphic ventricular tachycardia but, in this condition, its mechanism of action is contentious. We investigated how flecainide derivatives influence Ca2+-release from the sarcoplasmic reticulum through the ryanodine receptor channel (RyR2) and whether this correlates with their effectiveness as blockers of Na+ and/or RyR2 channels. Experimental Approach We compared the ability of fully charged (QX-FL) and neutral (NU-FL) derivatives of flecainide to block individual recombinant human RyR2 channels incorporated into planar phospholipid bilayers, and their effects on the properties of Ca2+ sparks in intact adult rat cardiac myocytes. Key Results Both QX-FL and NU-FL were partial blockers of the non-physiological cytosolic to luminal flux of cations through RyR2 channels but were significantly less effective than flecainide. None of the compounds influenced the physiologically relevant luminal to cytosol cation flux through RyR2 channels. Intracellular flecainide or QX-FL, but not NU-FL, reduced Ca2+ spark frequency. Conclusions and Implications Given its inability to block physiologically relevant cation flux through RyR2 channels, and its lack of efficacy in blocking the cytosolic-to-luminal current, the effect of QX-FL on Ca2+ sparks is likely, by analogy with flecainide, to result from Na+ channel block. Our data reveal important differences in the interaction of flecainide with sites in the cytosolic vestibules of Na+ and RyR2 channels

    Synthesis and evaluation of a silver nanoparticle/polyurethane composite that exhibits antiviral activity against SARS-CoV-2

    Get PDF
    In this proof-of-concept study, we aim to produce a polyurethane (PU)-based composite that can reduce the amount of viable SARS-CoV-2 virus in contact with the surface of the polymeric film without further interventions such as manual cleaning. Current protocols for maintaining the hygiene of commonly used touchpoints (door handles, light switches, shop counters) typically rely on repeated washing with antimicrobial products. Since the start of the SARS-CoV-2 pandemic, frequent and costly surface sanitization by workers has become standard procedure in many public areas. Therefore, materials that can be retrofitted to touchpoints, yet inhibit pathogen growth for extended time periods are an important target. Herein, we design and synthesise the PU using a one-pot synthetic procedure on a multigram scale from commercial starting materials. The PU forms a robust composite thin film when loaded with 10 wt% silver nanoparticles (AgNPs). The addition of AgNPs increases the ultimate tensile strength, modules of toughness and modulus of elasticity at the cost of a reduced elongation at break when compared to the pristine PU. Comparative biological testing was carried out by the addition of pseudotyped virus (PV) bearing the SARS-CoV-2 beta (B.1.351) VOC spike protein onto the film surfaces of either the pristine PU or the PU nanocomposite. After 24 h without further human intervention the nanocomposite reduced the amount of viable virus by 67% (p = 0.0012) compared to the pristine PU treated under the same conditions. The significance of this reduction in viable virus load caused by our nanocomposite is that PUs form the basis of many commercial paints and coatings. Therefore, we envisage that this work will provide the basis for further progress towards producing a retrofittable surface that can be applied to a wide variety of common touchpoints
    • …
    corecore