545 research outputs found

    Non-smooth optimization methods for computation of the conditional value-at-risk and portfolio optimization

    Get PDF
    We examine numerical performance of various methods of calculation of the Conditional Value-at-risk (CVaR), and portfolio optimization with respect to this risk measure. We concentrate on the method proposed by Rockafellar and Uryasev in (Rockafellar, R.T. and Uryasev, S., 2000, Optimization of conditional value-at-risk. Journal of Risk, 2, 21-41), which converts this problem to that of convex optimization. We compare the use of linear programming techniques against a non-smooth optimization method of the discrete gradient, and establish the supremacy of the latter. We show that non-smooth optimization can be used efficiently for large portfolio optimization, and also examine parallel execution of this method on computer clusters.<br /

    Energy Trade and Cooperation Between the EU and CIS Countries

    Get PDF
    The report reviews key issues in energy trade and cooperation between the EU and CIS countries. It describes historical trends of oil and gas demand in the EU, other European and CIS countries and offers demand forecasts until 2030. Recent developments in oil and gas production and exports from Russia and Caspian countries are covered in detail leading to the discussion of the likely export potential of these regions. The key factors determining the production outlook, trade-offs and competition related to energy resources transportation choices are also discussed. The report also covers the interests and role of transit countries in relations between producer and consumer regions. The analytical section leads to policy recommendations that focus mainly on the EU.energy supply, energy demand, gas and oil resources, Caspian countries, EU, Russia, Caucasus.

    Caspian Oil Windfalls: Who Will Benefit?

    Get PDF

    Machine learning algorithms for analysis of DNA data sets

    Full text link
    The applications of machine learning algorithms to the analysis of data sets of DNA sequences are very important. The present chapter is devoted to the experimental investigation of applications of several machine learning algorithms for the analysis of a JLA data set consisting of DNA sequences derived from non-coding segments in the junction of the large single copy region and inverted repeat A of the chloroplast genome in Eucalyptus collected by Australian biologists. Data sets of this sort represent a new situation, where sophisticated alignment scores have to be used as a measure of similarity. The alignment scores do not satisfy properties of the Minkowski metric, and new machine learning approaches have to be investigated. The authors' experiments show that machine learning algorithms based on local alignment scores achieve very good agreement with known biological classes for this data set. A new machine learning algorithm based on graph partitioning performed best for clustering of the JLA data set. Our novel k-committees algorithm produced most accurate results for classification. Two new examples of synthetic data sets demonstrate that the authors' k-committees algorithm can outperform both the Nearest Neighbour and k-medoids algorithms simultaneously

    New data on the distribution of digger wasps of the genus Ammophila W. Kirby, 1798 (Hymenoptera, Sphecidae)

    Get PDF
    An annotated list is given and the distribution of five species of digger wasps genus Ammophila, collected in the circumpolar regions of Western Siberia (in the Yamalo-Nenets Autonomous District) in 2017, is specified

    Max-min separability

    Get PDF
    We consider the problem of discriminating two finite point sets in the n-dimensional space by a finite number of hyperplanes generating a piecewise linear function. If the intersection of these sets is empty, then they can be strictly separated by a max-min of linear functions. An error function is introduced. This function is nonconvex piecewise linear. We discuss an algorithm for its minimization. The results of numerical experiments using some real-world datasets are presented, which show the effectiveness of the proposed approach.C

    Modified global k-means algorithm for minimum sum-of-squares clustering problems

    Get PDF
    k-Means algorithm and its variations are known to be fast clustering algorithms. However, they are sensitive to the choice of starting points and inefficient for solving clustering problems in large data sets. Recently, a new version of the k-means algorithm, the global k-means algorithm has been developed. It is an incremental algorithm that dynamically adds one cluster center at a time and uses each data point as a candidate for the k-th cluster center. Results of numerical experiments show that the global k-means algorithm considerably outperforms the k-means algorithms. In this paper, a new version of the global k-means algorithm is proposed. A starting point for the k-th cluster center in this algorithm is computed by minimizing an auxiliary cluster function. Results of numerical experiments on 14 data sets demonstrate the superiority of the new algorithm, however, it requires more computational time than the global k-means algorithm

    Cyberattack triage using incremental clustering for intrusion detection systems

    Get PDF
    Intrusion detection systems (IDSs) are devices or software applications that monitor networks or systems for malicious activities and signals alerts/alarms when such activity is discovered. However, an IDS may generate many false alerts which affect its accuracy. In this paper, we develop a cyberattack triage algorithm to detect these alerts (so-called outliers). The proposed algorithm is designed using the clustering, optimization and distance-based approaches. An optimization-based incremental clustering algorithm is proposed to find clusters of different types of cyberattacks. Using a special procedure, a set of clusters is divided into two subsets: normal and stable clusters. Then, outliers are found among stable clusters using an average distance between centroids of normal clusters. The proposed algorithm is evaluated using the well-known IDS data setsā€”Knowledge Discovery and Data mining Cup 1999 and UNSW-NB15ā€”and compared with some other existing algorithms. Results show that the proposed algorithm has a high detection accuracy and its false negative rate is very low. Ā© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.This research was conducted in Internet Commerce Security Laboratory (ICSL) funded by Westpac Banking Corporation Australia. In addition, the research by Dr. Sona Taheri and A/Prof. Adil Bagirov was supported by the Australian Government through the Australian Research Councilā€™s Discovery Projects funding scheme (DP190100580)

    Bundle enrichment method for nonsmooth difference of convex programming problems

    Get PDF
    The Bundle Enrichment Method (BEM-DC) is introduced for solving nonsmooth difference of convex (DC) programming problems. The novelty of the method consists of the dynamic management of the bundle. More specifically, a DC model, being the difference of two convex piecewise affine functions, is formulated. The (global) minimization of the model is tackled by solving a set of convex problems whose cardinality depends on the number of linearizations adopted to approximate the second DC component function. The new bundle management policy distributes the information coming from previous iterations to separately model the DC components of the objective function. Such a distribution is driven by the sign of linearization errors. If the displacement suggested by the model minimization provides no sufficient decrease of the objective function, then the temporary enrichment of the cutting plane approximation of just the first DC component function takes place until either the termination of the algorithm is certified or a sufficient decrease is achieved. The convergence of the BEM-DC method is studied, and computational results on a set of academic test problems with nonsmooth DC objective functions are provided. Ā© 2023 by the authors

    A simulated annealing-based maximum-margin clustering algorithm

    Get PDF
    Ā© 2018 Wiley Periodicals, Inc. Maximum-margin clustering is an extension of the support vector machine (SVM) to clustering. It partitions a set of unlabeled data into multiple groups by finding hyperplanes with the largest margins. Although existing algorithms have shown promising results, there is no guarantee of convergence of these algorithms to global solutions due to the nonconvexity of the optimization problem. In this paper, we propose a simulated annealing-based algorithm that is able to mitigate the issue of local minima in the maximum-margin clustering problem. The novelty of our algorithm is twofold, ie, (i) it comprises a comprehensive cluster modification scheme based on simulated annealing, and (ii) it introduces a new approach based on the combination of k-means++ and SVM at each step of the annealing process. More precisely, k-means++ is initially applied to extract subsets of the data points. Then, an unsupervised SVM is applied to improve the clustering results. Experimental results on various benchmark data sets (of up to over a million points) give evidence that the proposed algorithm is more effective at solving the clustering problem than a number of popular clustering algorithms
    • ā€¦
    corecore