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We examine numerical performance of various methods of calculation of the Conditional Value at
Risk (CVaR), and portfolio optimization with respect to this risk measure. We concentrate on the
method proposed by Rockafellar and Uryasev in (Journal of Risk, 2 (2000), 21-41), which converts
this problem to that of convex optimization. We compare the use of linear programming techniques
against a non-smooth optimization method of the discrete gradient, and establish the supremacy
of the latter. We show that non-smooth optimization can be used efficiently for large portfolio
optimization, and also examine parallel execution of this method on computer clusters.
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1 Introduction

Portfolio optimization facilitates the process of fund allocation such that the
optimal weightings in competing securities may be found whilst satisfying
choice constraints of risk and return. Value-at-risk (VaR) has become a stan-
dard measure used in financial risk management due to its conceptual simplic-
ity, computational facility, and ready applicability. However, many authors
claim that VaR has several conceptual problems, notably it is considered as
an inconsistent risk measure [1].
To alleviate the problems inherent in VaR, Artzner et al. [2] have proposed

the use of expected shortfall. Expected shortfall, or conditional VaR (CVaR),
is defined as the conditional expectation of loss given that the loss is beyond
the VaR level. Expected shortfall is proved to be sub-additive, which assures
its coherence as a risk measure [1–3]. On these grounds, some practitioners
have been turning their attention toward expected shortfall and away from
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VaR.
Recently Rockafellar and Uryasev [4, 5] have presented a new technique,

which allows one to compute both measures of risk (VaR and CVaR) simulta-
neously by using linear programming and non-smooth optimization techniques.
Furthermore, they proved that portfolio optimization can be performed simul-
taneously with calculating the optimal VaR and CVaR. Their method relies
on minimizing a certain auxiliary objective function Fβ , defined in the se-
quel, which is non-smooth, but convex for linear portfolios. In the latter case,
the optimization problem can be reduced to a large scale linear programming
problem.
Our main goal is to show that non-smooth optimization methods can be

used very effectively for portfolio optimization. We examine the method of
Rockafellar and Uryasev from the numerical point of view. We compare various
optimization techniques that can be used to compute VaR and CVaR, as
well as determine the optimal portfolio. In particular we will show that using
the discrete gradient method of non-smooth optimization (DG) [6] provides
significant computational advantages over linear programming methods used
in [4], including scalability for large portfolios, parallel computations, and the
ability to treat non-linear portfolios. We do not make any assumptions about
the normality of the distribution of portfolio losses.
The next section provides the basic definitions and outlines the method of

Rockafellar and Uryasev [4]. In section 3 we discuss two approaches to nu-
merical solution of the portfolio optimization problem: by using non-smooth
optimization and by converting it to a large scale linear programming problem.
We describe the non-smooth optimization approach and the discrete gradient
method in sections 4 and 5. The performance of numerical algorithms is ana-
lyzed and compared in section 6, by using a number of test cases. In section 7
we discuss the use of computer clusters for portfolio optimization problem and
our parallelization strategy. We present conclusions at the end of the paper.

2 Preliminaries

Consider a portfolio of market instruments of size n, represented by the relative
weightings of these instruments w ∈ IRn, wi ≥ 0,

∑

wi = 1. Let vector x ∈
IRn denote future returns of these instruments, which are random variables
with some underlying distribution with density p(x). The loss of the portfolio
L(w, x) (a negative return) is also a random variable which depends on the
market uncertainties x and weightings w. For example, for a linear portfolio
L(w, x) = −wtx.
The Value-at-Risk (VaR), or more precisely β-VaR, is defined as the maxi-

mum loss L(w, x) such that with probability β (typically 95%) portfolio loss
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will not exceed α. The probability of L(w, x) not exceeding α is given as

β = P (L(w, x) ≤ α) = P (α) =

∫

L(w,x)≤α
p(x) dx, (1)

VaR is expressed as the β-th quantile of P

αβ = min{α ∈ IR : P (α) ≥ β}. (2)

CVaR or β-CVaR, also referred to as the mean excess loss, mean shortfall, or
tail VaR, is defined (for continuous distributions) as the conditional expected
loss subject to the condition that it falls below β-VaR. β-CVaR is defined as
the expectation

ψβ = E(L(w, x)|L(w, x) ≥ αβ) (3)

= (1− β)−1
∫

L(w,s)≥αβ

L(w, x)p(x) dx

= (1− β)−1
∫

IRn

(L(w, x)− αβ)+p(x) dx,

where t+ = max{t, 0}.
CVaR possesses a number of desired mathematical properties, notably con-

vexity and subadditivity, and hence is a more attractive measure of risk than
VaR [3, 4, 7, 8] (VaR is subadditive only for Gaussian distributions and some
other special cases). Unlike VaR, which may discourage diversification as it
underestimates the risks associated with the individual securities [3], CVaR
correctly embodies the reduction of risks associated with diversification.
For discontinuous distributions, there are several equivalent definitions of

CVaR [5], notably it can be defined as a weighted average of VaR and con-
ditional expected losses exceeding VaR, CVaR+, see [5]. In this general case
CVaR is still a coherent measure of risk.
We consider the following portfolio optimization problem: find the optimal

weightings w, such that the risk associated with the portfolio is minimized.
The feasible domain is the unit simplex

S = {w ∈ IRn : wi ≥ 0,
∑

wi = 1},

however it is common to restrict it further, for instance by considering
only portfolios with the expected return no less than some value R, i.e.,
L(w,E(x)) ≤ −R.
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There are many measures of risk that can be used for portfolio optimization
[7, 9], VaR and CVaR are among them. In this study, following a number of
authors [3–5,7], we will optimize the portfolio with respect to CVaR.
Rockafellar and Uryasev [4, 5] have presented a new technique for efficient

computation of both VaR and CVaR, as well as for porftolio optimization, by
using non-smooth optimization. Their method represents αβ and ψβ in terms
of a continuous auxiliary function Fβ , and finds the respective risk measures
by minimizing Fβ . Fβ has been given as

Fβ(α) = α+ (1− β)−1
∫

x∈IRn

(L(w, x)− α)+p(x) dx, (4)

where we drop the index β in αβ to simplify the notation. Theorem 1 in [4](p.
24-25) establishes β-CVaR and β-VaR, with respect to Fβ , as

ψβ = minFβ(α), (5)

and

αβ = lower bound of argminFβ(α). (6)

The convenience of the formulae above is that both measures of risk are
calculated simultaneously. Furthermore, Theorem 2 in [4] (p. 25-26) establishes
that minimizing β-CVaR associated with w over all w ∈ S is equivalent to
minimizing Fβ(w,α) over all (w,α) ∈ S × IR:

min
w

ψβ(w) = min
w,α

Fβ(w,α), (7)

Thus calculation of both measures of risk, and portfolio optimization with
respect to CVaR can be performed simultaneously. We note that the above
equations have been derived irrespective of the distribution p(x), which is not
necessarily normal or log-normal.
The main attractiveness of using (7) is that Fβ is a convex continuously

differentiable function of α, and for convex loss functions L(w, x) (e.g., linear
portfolios), it is also convex w.r.t. w. Therefore its minimum can be found
by methods of convex optimization. This is in sharp contrast with optimizing
portfolio w.r.t. VaR, in which case the objective function is non-convex, and
involves many local minima.
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3 Calculation methods

The evaluation of the objective function Fβ involves a multidimensional inte-
gral over IRn, which can be calculated by using Monte-Carlo method. For this
we sample the probability distribution of x according to its density p(x). The
sampling generates a collection of q vectors x1, . . . , xq ∈ IRn, called scenarios.
Fβ is approximated as

F̂β(w,α) = α+
1

q(1− β)

q
∑

i=1

(ti − α)+, (8)

where ti = L(w, xi) is the loss of the portfolio under the scenario i. F̂β is
convex and piecewise linear with respect to α. It is also convex with respect
to w, as long as L(w, x) is convex. For a linear portfolio, F̂β is convex and
piecewise linear with respect to w.
We consider two problems.
Problem A Calculation of CVaR and VaR for a fixed portfolio.

minα F̂β(w,α), (9)

s.t. w fixed.

Problem B Calculation of the optimal portfolio.

minα,w F̂β(w,α), (10)

s.t. w ∈ S ∩D,

where the feasible domain is the intersection of the unit simplex S and a
compact subset D, representing user specified requirements, such as having a
portfolio with the mean return at least R, i.e.,

D = {w ∈ S : L(w,E(x)) ≤ −R}.

As a special case, we consider a linear portfolio, with L(w, x) = −wtx. In
this case both problems A and B can be reformulated as linear programming
problems [4].
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Problem A’ Calculation of CVaR and VaR for a fixed portfolio.

minα,ε α+
1

q(1−β)

∑q
i=1 εi (11)

s.t. α+ εi ≥ ti = L(w, xi), i = 1, . . . , q,

εi ≥ 0, α urs,
w fixed.

Problem B’ Calculation of the optimal linear portfolio.

minα,w,ε α+
1

q(1−β)

∑q
i=1 εi (12)

s.t. α+ εi +
∑n

j=1wjxij ≥ 0, i = 1, . . . , q,
w ∈ S ∩D
εi ≥ 0, α urs.

Here xij denotes the j-th component of the vector xi.
Thus for each problem A and B we have two approaches: (i) to solve problem

A (or B) directly using non-smooth optimization, and (ii) to solve problem A’
(or B’) using linear programming methods. In the latter case we can use the
simplex method or the interior point method. Note that in Problem A’ the
system of constraints is sparse, while in Problem B’ it is dense.
For an accurate approximation of Fβ we need to use a large number of

scenarios, especially for large portfolios. Therefore problems A’ and B’ will
have a very large number of variables, namely q+1 and n+ q+1. In contrast,
Problems A and B have one and n + 1 variables. It is not obvious which
approach will be more efficient computationally, and one of the purposes of
this study is to provide a comparative analysis of these techniques. Before we
do this, however, we will describe the non-smooth optimization technique used
in our study.

4 Non-smooth optimization approach

Portfolio optimization Problem B is a non-smooth optimization problem with
linear equality and inequality constraints. A comprehensive description of non-
smooth analysis can be found, for example, in [10]. There are different gener-
alizations of the gradient that were proposed and studied by many authors.
Two such generalizations: the Clarke subdifferential and Demyanov-Rubinov
quasidifferential are widely used. In this study we employ the discrete gradient
method, which uses a finite difference approximation to Clarke subdifferential.
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The detailed description of the discrete gradient method as a tool for uncon-
strained non-smooth minimization was given in [6, 11–13]. Since the portfolio
optimization problem involves a set of linear constraints, we first outline how
such a problem is reduced to a non-smooth unconstrained optimization prob-
lem, to which we will subsequently apply the discrete gradient method.
We consider the following minimization problem with linear equality

minimize f(x) (13)

subject to x ∈ X = {y ∈ IRn : Ay = b} (14)

where the objective function f is assumed to be convex and in general, nons-
mooth, A is a m × n matrix, b ∈ IRm. Without loss of generality we assume
that the rank of the matrix A is equal to m and m < n.
In this case one can solve the system of linear equations (14). Since m < n

then we can divide variables x1, . . . , xn into two parts: x = (xB, xN ) where
xB ∈ IRn−m, xN ∈ IRm. Then one can present the matrix as follows:

A = (A1, A2)

where A1 is a m × (n − m) matrix consisting of columns of the matrix A
corresponding to variables xB and A2 is a m×m matrix consisting of columns
of the matrix A corresponding to variables xN and A2 is not singular. Then
the system (14) can be rewritten as:

A1xB +A2xN = b.

One can solve this system of linear equations with respect to non-basic vari-
ables xN :

xN = A−12 (b−A1xB).

Thus we can represent the non-basic variables xN as follows:

xN = BxB + b
1,

where

b1 = A−12 b, B = −A−12 A1.
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The objective function f in problem (13) can be rewritten as

f(x) = f(xB, xN ) = f(xB, BxB + b
1).

We define the following function

h(y) = f(y,By + b1), y ∈ IRn−m.

Proposition 4.1 Let f be a convex proper function on IRn. Then the function
h is a proper convex on IRn−m.

Proof This result is known in convex analysis in more general cases, however
we shall provide a short direct proof here.

h(αy + (1− α)z) = f(αy + (1− α)z,B(αy + (1− α)z) + b1)
= f(αy + (1− α)z, α(By + b1) + (1− α)(Bz + b1)).

We denote

x1 = (y,By + b1) ∈ IRn, x2 = (z,Bz + b1) ∈ IRn.

Then we have

(αy + (1− α)z, α(By + b1) + (1− α)(Bz + b1)) = αx1 + (1− α)x2,

and consequently the convexity of the function f implies that

h(αy + (1− α)z) = f(αx1 + (1− α)x2)
≤ αf(x1) + (1− α)f(x2)
= αf(y,By + b1) + (1− α)f(z,Bz + b1)
= αh(y) + (1− α)h(z).

The fact that the function h is proper is straightforward. ¤

We take any x ∈ X. It is clear that the cone of feasible directions at the
point x ∈ X can be expressed as follows:

K(x) = {g ∈ IRn : Ag = 0}.
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We consider the following unconstrained minimization problem:

minimize h(y) subject to y ∈ IRn−m. (15)

Proposition 4.2

1) Let x∗ ∈ X be a solution to problem (13)-(14). Then there exists y∗ ∈ IRn−m
such that x∗ = (y∗, By∗ + b1) and y∗ is a solution to problem (15).

2) Let y∗ ∈ IRn−m be a solution to problem (15). Then x∗ = (y∗, By∗ + b1) is
a solution to problem (13)-(14).

Proof 1) Since the function f is a proper convex it is directionally differen-
tiable. Then the function h is also directionally differentiable on IRn−m and
for any y, e ∈ Rn−m, e 6= 0

h′(y, e) = lim
α→+0

h(y + αe)− h(y)
α

= lim
α→+0

f(y + αe,B(y + αe) + b1)− f(y,By + b1)
α

= lim
α→+0

f(y + αe,By + b1 + αBe)− f(y,By + b1)
α

.

We denote

x = (y,By + b1), g = (e,Be) ∈ IRn.

Then

h′(y, e) = lim
α→+0

f(x+ αg)− f(x)
α

= f ′(x, g).

Let x∗ ∈ X be a solution to problem (13)-(14). Let y∗ = x∗B ∈ IRn−m be a
vector of basic variables. It is clear that x∗ = (y∗, By∗ + b1). It follows from a
necessary condition for a minimum that

f ′(x∗, g) ≥ 0 for any g ∈ K(x).

We take any direction e ∈ IRn−m. Then g = (e,Be) ∈ K(x) for any x ∈ X.
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Indeed

Ag = (A1, A2)(e,Be)
T

= (A1e+A2(Be))

= (A1e+A2(−A−12 A1e))

= 0,

that is g ∈ K(x). Thus for any direction e ∈ IRn−m at the point y∗ we have

h′(y∗, e) = f ′(x∗, (e,Be)) ≥ 0.

Since h is a convex function the latter means that y∗ is a solution to problem
(15).

2) Let y∗ be a solution to problem (15). It is clear that x∗ = (y∗, By∗+b1) ∈ X.
First we have to prove that for any g ∈ K(x) there exists e ∈ IRn−m such that
g = (e,Be). Since g ∈ K(x) it follows that Ag = 0. We denote by gB ∈ IRn−m a
vector which contains basic variables and by gN ∈ IRm a vector which contains
non-basic variables. Then we have

(A1, A2)(gB, gN )
T = 0,

and therefore

gN = −A−12 A1gB = BgB.

Let e = gB. Then

g = (e,Be).

It follows from the necessary condition for a minimum that

h′(y∗, e) ≥ 0 for any e ∈ IRn−m.

For any g ∈ K(x∗) there exists e ∈ IRn−m such that

f ′(x∗, g) = h′(y∗, e) ≥ 0.

Since f is a convex function, x∗ is a solution to problem (13)-(14).
¤
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Thus problem (13)-(14) can be reduced to the unconstrained minimization
problem (15). This is a non-smooth convex optimization problem and we apply
the discrete gradient method to solve it. A brief description of the discrete
gradient method is given in the next section.

5 Discrete gradient method

5.1 Definition of the discrete gradient

Let ϕ be a locally Lipschitz continuous function defined on IRn. Let

S1 = {g ∈ IRn : ‖g‖ = 1}, G = {e ∈ IRn : e = (e1, . . . , en), |ej | = 1, j = 1, . . . , n},

P = {z : R→ IR : z(λ) > 0, λ > 0, λ−1z(λ) ↓ 0, if λ ↓ 0},

I(g, α) = {i ∈ {1, . . . , n} : |gi| ≥ α},

where α ∈ (0, n−1/2] is a fixed number.
Here S1 is the unit sphere, G is the set of vertices of the unit hypercube in

IRn and P is the set of univariate positive infinitesimal functions.

We take any x ∈ IRn, g ∈ S1, i ∈ I(g, α) and define a point

x0i = x+ λg.

Let e(β) = (βe1, β
2e2, . . . , β

nen), where e ∈ G, β ∈ (0, 1]. We define a sequence
of n points as follows:

x1i =
x2i =
x3i =
·
xi−1i =

xi+1
i =

xi+2
i =
·
xni =

x0i+ (h1, 0, . . . , 0)
x1i+ (0, h2, 0, . . . , 0)
x2i+ (0, 0, h3, . . . , 0)
· ·
xi−2i + (0, . . . , 0, hi−1, 0, . . . , 0)

xi−1i + (0, . . . , 0, 0, 0, hi+1, 0, . . . , 0)

xi+1
i + (0, . . . , 0, 0, 0, 0, hi+2, 0, . . . , 0)
· ·
xn−1i + (0, . . . , 0, hn)

where hj = −z(λ)ej(β), ej(β) = βjej , z ∈ P .
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Definition 5.1 (see [12, 14]) The discrete gradient of the function ϕ at the
point x ∈ IRn is the vector Γi(x, g, e, z, λ, β) = (Γi1, . . . ,Γin) ∈ IRn, g ∈ S1, i ∈
I(g, α), with the following coordinates:

Γij = [z(λ)ej(β)]
−1

[

ϕ(xj−1i )− ϕ(xji )
]

, j = 1, . . . , n, j 6= i,

Γii = (λgi)
−1



ϕ(xni )− ϕ(x)−
n

∑

j=1,j 6=i

Γij(λgj − z(λ)ej(β))



 .

A more detailed description of the discrete gradient and examples can be
found in [12,13].

Remark 1 It follows from Definition 5.1 that for the calculation of the discrete
gradient Γi(x, g, e, z, λ, β), i ∈ I(g, α) we define a sequence of points

x0i , . . . , x
i−1
i , xi+1

i , . . . , xni .

The calculation of the discrete gradient involves evaluating the objective func-
tion ϕ at each point of this sequence.

Remark 2 The discrete gradient is defined with respect to a given direction
g ∈ S1. We can see that to calculate one discrete gradient we need to cal-
culate (n + 1) values of the function ϕ: at the point x and at the points
x0i , . . . , x

i−1
i , xi+1

i , . . . , xni , i ∈ I(g, α). To calculate another discrete gradient
at the same point x with respect to another direction g1 ∈ S1 we have to
calculate this function n times, because we have already calculated ϕ at the
point x.

5.2 Calculation of the descent direction

We consider the following unconstrained minimization problem:

minimize ϕ(x) subject to x ∈ IRn (16)

where the function ϕ is assumed to be Lipschitz continuous.
In the core of the discrete gradient method lies calculation of a direction of

descent of the objective function ϕ. Therefore, we first describe an algorithm
for the calculation of this direction.
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Let z ∈ P, λ > 0, β ∈ (0, 1], the number c ∈ (0, 1) and a tolerance δ > 0 be
given.

Algorithm 1 Calculation of a direction of descent.

Input: Point x ∈ IRn, the objective function ϕ.

Step 1. Choose any g1 ∈ S1, e ∈ G, i ∈ I(g1, α) and compute a discrete gradient
v1 = Γi(x, g1, e, z, λ, β). Set D1(x) = {v1} and k = 1.

Step 2. Calculate the vector ‖wk‖2 = min{‖w‖2 : w ∈ Dk(x)}. If

‖wk‖ ≤ δ, (17)

then stop. Otherwise go to Step 3.

Step 3. Calculate the search direction by gk+1 = −‖wk‖−1wk.
Step 4. If

ϕ(x+ λgk+1)− ϕ(x) ≤ −cλ‖wk‖, (18)

then stop. Otherwise go to Step 5.

Step 5. Calculate the discrete gradient

vk+1 = Γi(x, gk+1, e, z, λ, β), i ∈ I(gk+1, α),

construct the set Dk+1(x) = co {Dk(x)
⋃{vk+1}}, set k = k+1 and go to Step

2.

We give some explanations to Algorithm 1. In Step 1 we calculate the first
discrete gradient with respect to an initial direction g1 ∈ IRn. The distance
between the convex hullDk of all calculated discrete gradients and the origin is
calculated in Step 2. This problem can be solved using Wolfe’s algorithm [15],
which is very efficient numerically. If this distance is less than the tolerance
δ > 0 then we accept the point x as an approximate stationary point (Step 2),
otherwise we calculate another search direction in Step 3. In Step 4 we check
whether this direction is a direction of descent. If it is then we stop, otherwise
we calculate another discrete gradient with respect to this direction in Step 5
and update the set Dk. At each iteration k we improve the approximation Dk

of the subdifferential of the function ϕ.

It is proved that Algorithm 1 is terminating (see [13]).
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5.3 Minimization algorithm

Now we can describe the discrete gradient algorithm. Let sequences δk >
0, zk ∈ P, λk > 0, βk ∈ (0, 1], δk → +0, zk → +0, λk → +0, βk → +0, k →
+∞ and numbers c1 ∈ (0, 1), c2 ∈ (0, c1] be given.

Algorithm 2 Discrete gradient method.

Step 1. Choose any starting point x0 ∈ IRn and set k = 0.
Step 2. Set s = 0 and xks = xk.

Step 3. Apply Algorithm 1 to calculate the descent direction at x = xks , δ =
δk, z = zk, λ = λk, β = βk, c = c1. This algorithm terminates after a finite
number of iterations l > 0. As a result we get the set Dl(x

k
s) and an element

vks such that

‖vks‖2 = min{‖v‖2 : v ∈ Dl(x
k
s)}.

Furthermore either ‖vks‖ ≤ δk or for the search direction g
k
s = −‖vks‖−1vks

ϕ(xks + λkg
k
s )− ϕ(xks) ≤ −c1λk‖vks‖. (19)

Step 4. If

‖vks‖ ≤ δk (20)

then set xk+1 = xks , k = k + 1 and go to Step 2. Otherwise go to Step 5.

Step 5. Construct the following iteration xks+1 = xks+σsg
k
s , where σs is defined

as follows

σs = arg max
{

σ ≥ 0 : ϕ(xks + σgks )− ϕ(xks) ≤ −c2σ‖vks‖
}

.

Step 6. Set s = s+ 1 and go to Step 3.

For the point x0 ∈ IRn we consider the set M(x0) = {x ∈ IRn : ϕ(x) ≤
ϕ(x0)}. Assume that the function ϕ is convex. Denote by ∂ϕ(x) Clarke’s sub-
differential.

Theorem 5.2 [13] Assume that the set M(x0) is bounded for starting points
x0 ∈ IRn. Then every accumulation point of {xk} belongs to the set X0 = {x ∈
IRn : 0 ∈ ∂ϕ(x)}.
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Table 1. The mean monthly returns of a test portfolio.

Instrument S&P Gov. bond Small cap
Mean return 0.0101110 0.0043532 0.0137058

Table 2. Test portfolio covariance matrix.

S&P Gov. bond Small cap
S&P 0.00324625 0.00022983 0.00420395

Gov. bond 0.00022983 0.00049937 0.00019247
Small cap 0.00420395 0.00019247 0.00764097

6 Performance of the algorithms

The main goal of our study is to establish the most computationally efficient
way to solve problems A and B (Eqs.(9) and (10)). We considered the following
alternatives:

(I) Convert Problem A (B) to a linear programming problem A’ (B’) and solve
it using the simplex method;

(II) Solve problem A’ (B’) using the interior point method;
(III) Solve the dual to problem A’ (B’) using the simplex method;
(IV) Solve the dual to problem A’ (B’) using the interior point method;
(V) Solve problem A (B) using the discrete gradient (DG) method from [6],

using a penalty function to handle the constraints;
(VI) Solve problem A (B) using the discrete gradient method, and handle the

equality constraints as described in section 4.

The difference between options (V) and (VI) lies in how the linear equality
constraints are handled by the algorithm: by using penalty functions in (V)
and by using the approach in section 4 in (VI). The linear inequality and box
constraints are dealt with using exact penalty functions in both cases.
We used several test problems to compare the above mentioned alternative

algorithms. In all cases we used linear portfolios, as this is a basic requirement
for options (I)-(IV). The methods (V), (VI) do not require the portfolio to be
linear.
The first problem is taken from [4]. It involves a small portfolio with three

positions, S&P, Government bonds and small capital stocks. It is assumed
that the variables x are normally distributed, with the vector of means and
covariance matrix given in Tables 1, 2. For problem A (A’) the weights were
fixed at w = (0.452013, 0.115573, 0.432414). For problems B (B’) the weights
were variables, and the feasible set D was defined by the restriction wtE(x) ≥
0.011.
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Table 3. VaR and CVaR obtained with the min-

imum variance approach.

β = 0.90 β = 0.95 β = 0.99
VaR 0.067847 0.090200 0.132128
CVaR 0.096975 0.115908 0.152977

The specific reason for choosing this test problem is that its exact solution is
known. It can be obtained as the solution to the minimal variance problem [16]

min
x∈S∩D

σ2(w). (21)

Rockafellar and Uryasev [4] prove that if the components of x are normally
distributed, β ≥ 0.5, and the constraint wtE(x) ≥ R is active at solutions of
problem B and that of (21), the solutions of the two problems coincide. Thus
we have a benchmark problem to test the correctness of our algorithms. By
solving (21) we obtain the optimal weights w∗ = (0.452013, 0.115573, 0.432414)
and the values of VaR and CVaR, given in Table 3.
The second series of test problems we considered was aimed at establishing

the numerical performance and scalability of the algorithms. We took linear
portfolios of size 5, 10, 20, and 40, with normally distributed losses, with means
randomly chosen in [0, 0.05], and randomly chosen covariance matrices. We in-
cluded suitable inequality constraints into the problem, notably the constraint
on the smallest mean return R. We repeated the experiments 10 times and
report the mean running time for each algorithm.
In the third series of test problems, we again took linear portfolios of varying

size, but did not use normally distributed losses. Instead we used the gener-
alized hyperbolic distribution [17], which is gaining popularity in financial
modeling [18,19]. The density of this distribution is given as

ρGH(x;λ, α, β, δ, µ) =
(a/δ)λ√
2πKλ(aδ)

Kλ−1/2(α
√

δ2 + (x− µ)2)
(
√

δ2 + (x− µ)2/α)1/2−λ
· eβ(x−µ),

where a2 = α2 − β2 and Kλ is the modified Bessel function of the third kind
with index λ. The parameters µ and δ control density’s location and scale,
whereas α and β play the role of the kurtosis and skewness of the distribution.
This family of distributions has semi-heavy tails and is rich enough to model
financial time series [18].
In our study we used parameters randomly chosen in the intervals λ ∈

[−2, 2], α ∈ [10, 200],β ∈ [−5, 5],δ ∈ [0.001, 0.05],µ ∈ [−0.001, 0.001], as it
appears from the literature that estimation of unknown parameters from em-
pirical data using maximum likelihood approach lead to parameters in the
above ranges [20].



Nonsmooth optimization methods for computation of CVaR and portfolio optimization 17

We used the following software packages for solving linear programming
problems A’ and B’: lpsolve [21], and glpk [22], both implemented in C
language. We used our own implementation of the discrete gradient methods
in C++ language. Since our main goal was limited to establishing feasibil-
ity of non-smooth optimization techniques for portfolio optimization, rather
than comparing these techniques among themselves, we did not use alterna-
tive methods (see, e.g. [23]). The computations were performed on a cluster
of linux workstations, each with Xeon 2.8 GHz processor and 1 GB of RAM.
We summarize the computational results in Tables 4-10. From the Tables

4,5 it is clear that converting problems A’ and B’ to their duals brings a signif-
icant computational advantage. It is revealed that the interior point method is
either significantly slower, or fails for this type of problems (either insufficient
RAM or no convergence). There were no substantial differences between the
implementations of the revised simplex method in lpsolve and glpk packages.
For the second and third series of test problems, solving the primal problems

A’ and B’ proved to be extremely inefficient, and so was the interior point
algorithm. Therefore we only report on the most efficient technique for solving
the duals to A’ and B’, which was the revised simplex method.
Tables 6,7, reveal that when the number of scenarios q increases, the comput-

ing time for the simplex method grows at a superlinear rate. This is of course
not unexpected, as simplex is an algorithm with exponential complexity, even
though on average its computing time increases polynomially.
In contrast, the discrete gradient method exhibits a linear growth in com-

plexity. The dimension of the problems A and B is relatively low, and even
though the objective function becomes more complicated with the increasing
q, it appears that DG does not require a significantly increased number of
iterations. We attribute the increased computing time to the number of terms
in the objective function. There were no substantial differences in computing
time between the test problems with normally and hyperbolically distributed
losses (Tables 7,8).
Our series of numerical experiments confirms the superior efficiency of the

discrete gradient method as a method of calculation of VaR and CVaR, and
portfolio optimization for moderate size portfolios and large number of sce-
narios. Despite that the linear programming formulation seems to be more
attractive, it does not scale well. On the other hand, linear programming
formulation will bring advantages for very large portfolios (up to 106 instru-
ments), but with fewer scenarios.
Note that for an accurate approximation of the integral in (8), one needs

to take a very large number of scenarios. Currently up to q = 105 scenarios
are used in practical computations, but we think this number is insufficient for
quality approximation. This number should be even higher for larger portfolios.
Non-smooth optimization methods scale very well with the number of scenar-
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Table 4. Computing time (s) for methods (I)-(VI) for Test portfolio 1

with fixed weights, as a function of the number of scenarios.

β q (I) (II) (III) (IV) (V) (VI)
0.90 1000 0.01 33 0.01 0.01 0.01 0.01
0.90 20000 11 fail 2 182 0.01 0.01
0.90 40000 46 fail 8 844 1 1
0.90 100000 288 fail 14 5561 1 3
0.90 500000 7238 fail 1097 > 14h 9 20
0.90 1000000 28516 fail 4392 > 14h 15 45
0.95 1000 0.01 39 0.01 0.01 0.01 0.01
0.95 20000 5 fail 1 216 0.1 0.01
0.95 40000 22 fail 4 1070 0.1 1
0.95 100000 147 fail 23 6603 2 2
0.95 500000 3716 fail 555 > 14h 9 15
0.95 1000000 > 14h fail 2215 > 14h 19 38
0.99 1000 0.01 44 0.01 0.01 0.01 0.01
0.99 20000 2 fail 0.1 380 0.01 0.01
0.99 40000 5 fail 1 1727 1 1
0.99 100000 28 fail 5 11310 1 2
0.99 500000 674 fail 113 > 14h 8 12
0.99 1000000 > 14h fail 448 > 14h 18 25

ios, as this number has no effect on the number of variables. Thus non-smooth
optimization offers an advantageous computational alternative for modest size
portfolios.
On the other hand, problems A and B are more general than A’ and B’, as

they do not assume linear portfolio. DG will work equally well with convex
portfolios. We remind that in this case F̂β is also a convex function of w and
α.
If L(w, x) is not convex but concave (as is frequently the case in practice),

F̂β is not convex, and it may possess many local minima. In this setting DG
method will bring another advantage – its ability to skip shallow local minima
and converge to a sufficiently deep local, if not the global minimum. We have
confirmed this feature experimentally in [24], where we used DG for optimiza-
tion of a very complicated objective function with myriads of local minima
(the Lennard-Jones cluster problem). We demonstrated that DG systemat-
ically converges to a much deeper local minimum than an alternative local
descent method.
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Table 5. Computing time (s) for methods (I)-(VI) for Test portfolio 1

with variable weights, as a function of the number of scenarios.

β q (I) (II) (III) (IV) (V) (VI)
0.90 1000 0.01 46 0.01 1 0.01 1
0.90 20000 40 fail 26 fail 2 1
0.90 40000 250 fail 130 fail 7 2
0.90 100000 4687 fail 914 fail 13 7
0.90 500000 43900 fail 24622 fail 60 44
0.90 1000000 > 14h fail > 14h fail 137 68
0.95 1000 0.01 50 0.01 1 0.01 0.01
0.95 20000 21 fail 11 fail 7 1
0.95 40000 129 fail 62 fail 11 2
0.95 100000 2223 fail 467 fail 64 4
0.95 500000 > 14h fail 10014 fail 163 21
0.95 1000000 > 14h fail > 14h fail 322 49
0.99 1000 0.01 49 0.01 1 0.01 0.01
0.99 20000 5 fail 3 fail 2 1
0.99 40000 25 fail 12 fail 14 1
0.99 100000 452 fail 72 fail 24 6
0.99 500000 > 14h fail 1651 fail 119 16
0.99 1000000 > 14h fail > 14h fail 246 27

Table 6. Computing time (s) for

methods (III),(V) and (VI) for a se-

ries of test portfolio 2 with variable

weights, as a function of the number

of scenarios q and the number of secu-

rities n. β = 0.95.

n q (III) (V) (VI)
3 103 0.028 0.01 1
3 104 3.05 3 2
3 105 290 64 4
3 106 fail 322 49
5 103 0.034 0.59 0.5
5 104 3.35 4 5
5 105 282 41 65
7 103 0.033 1.07 0.8
7 104 2.56 5.8 7
7 105 207 100 45
9 103 0.039 2.25 1.8
9 104 2.48 75 12
9 105 195 160 50
11 103 0.038 2.8 2.1
11 104 2.11 85 16
11 105 149 210 68

7 Parallelization

The use of computer clusters as an alternative to supercomputers is now
widespread. It involves using a number of low-cost workstations interconnected
by a fast network, and dividing the computational effort among the work-
stations. Parallelization of the computational algorithm is an important task
when porting the software to computer clusters. Not all algorithms can be par-
allelized, and when they can, often this task involves a significant development
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Table 7. Computing time (s) for

methods of non-smooth optimiza-

tion (V) and (VI) for a series

of test portfolio 2 with variable

weights, as a function of the num-

ber of scenarios q and the number

of securities n. β = 0.95.

n q (V) (VI)
5 104 4 5
5 105 41 65
5 106 558 197
5 107 5552 1497
10 104 82 12
10 105 166 35
10 106 1760 702
10 107 16100 5420
20 104 291 64
20 105 4555 700
20 106 31260 3920
20 107 fail 24000
40 104 4600 140
40 105 14504 1620
40 106 135385 16530

Table 8. Computing time (s) for

methods of non-smooth optimiza-

tion (V) and (VI) for a series of

test portfolio 3 (generalized hyper-

bolic distribution) with variable

weights, as a function of the num-

ber of scenarios q and the number

of securities n. β = 0.95.

n q (V) (VI)
5 104 20 2
5 105 159 17
5 106 8349 178
10 104 72 6
10 105 4668 48
10 106 29930 299
20 104 457 27
20 105 8943 280
20 106 36601 1040
40 104 4600 130
40 105 24504 1200
40 106 385000 11800

effort. For instance, while the original simplex method is easily parallelized,
parallelization of the revised simplex method is a much harder task [25,26].
In this section we report on parallelization of our approach to solving prob-

lems A and B using the discrete gradient method. We reported earlier on the
parallelization of the discrete gradient algorithm in [24]. In this study we took
a different approach of parallelizing the computation of the objective function,
rather than the optimization algorithm.
The rationale for the current approach is the specifics of the problem: the
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most computational effort is spent on the evaluation of the integral in (8).
Therefore it makes sense to use a simpler serial version of the DG algorithm,
and distribute the computation of the sum in F̂β over different processors.
In addition, when using a large number of scenarios q, one has to store

the generated values of the simulated xi. For example for a portfolio with
100 positions and 107 scenarios, it requires 8 × 109 bytes ≈ 8 Gb of random
access memory (RAM), which is beyond capabilities of standard workstations.
When distributing computations over the nodes of a cluster, one can also
use combined RAM of the nodes, by storing the subsets of the scenarios on
different nodes. There is no need for much interprocessor communication, as
computation of the partial sums in (8) does not require access to the values
of xi for all scenarios.
Below we outline the parallel algorithm. We use the master-slave model,

in which one processor (master) controls the (serial) optimization algorithm.
The optimization algorithm periodically requires computation of the values of
F̂β(w,α) with given values of the arguments w,α. At this point the master
processor broadcasts the vector of the arguments, and the slave processors

calculate the partial sums
∑ik+1

i=ik+1(L(w, xi)−α)+, where k is the rank of the
slave processor, k = 1, . . . ,K, and i1 = 0, iK+1 = q. (The master processor
k = 1 also performs the role of a slave processor, and calculates its share of
the sum). The slave processors send their partial sums to the master, which

computes the total, and subsequently the value F̂β(w,α). The values of the
random variables xi, sampled from the density p(x), are computed before the
start of the optimization algorithm by each processor, also in parallel, as only
the subset of values {xi : i = ik + 1 . . . , ik+1} is required on the processor
k. This process is illustrated on Fig.1. The implementation of the parallel
algorithm is straightforward.
We performed a number of numerical experiments to establish the speed-up

factors when using computer clusters of various sizes. The issue here is that
we still use a serial optimization algorithm, which may become a bottleneck
in the computations. The efficiency of our parallelization procedure depends
on the ratio between the complexity of the optimization algorithm itself and
that of the computation of the objective function [27]. For a small number of
variables, computation of the objective function will dominate the time spent
by the optimization algorithm, and we expect a significant speed-up. For larger
portfolios this may not be the case.
Tables 9,10 summarize the results of our testing. We used portfolios of dif-

ferent size, varied the number of scenarios q, and ran our algorithm on the
clusters with the indicated number of nodes. We obtained almost a perfect
linear speed-up for small and large portfolios. We measured the time spent
on computation of the values of the objective function (as a proportion of
the total running time), and obtained figures in 95% − 100% range. It con-



22 G. Beliakov and A. Bagirov

Table 9. Parallel execution of the discrete gradient method (V) for a

series of test portfolios 2, β = 0.95. Computing time (s).

n q 1 node 2 nodes 4 nodes 8 nodes 16 nodes
5 104 4 2 2 1 1
5 105 41 27 15 8 4
5 106 558 332 143 73 40
5 107 5552 2825 1260 593 466
10 104 40 16 12 6 4
10 105 166 85 60 25 13
10 106 1760 797 433 209 122
10 107 16100 7800 3912 2053 1109
20 104 291 99 40 21 17
20 105 4555 1048 285 196 96
20 106 31260 6958 2332 1553 826
20 107 fail 103061 36176 12660 6848
40 104 1752 2354 2733 551 410
40 105 14504 10697 3777 2259 1097
40 106 135385 58685 29187 23492 98312

Table 10. Parallel execution of the discrete gradient method (VI) for a

series of test portfolios 2, β = 0.95. Computing time (s).

n q 1 node 2 nodes 4 nodes 8 nodes 16 nodes
5 104 5 2 2 1 < 1
5 105 65 33 4 4 2
5 106 197 98 50 26 13
5 107 1497 753 390 194 97
10 104 12 6 6 2 1
10 105 35 19 9 5 3
10 106 702 351 183 89 45
10 107 5420 2780 1421 711 354
20 104 64 33 16 5 4
20 105 700 370 175 89 47
20 106 3920 2010 993 492 242
20 107 24000 11900 5867 2902 1537
40 104 140 72 35 19 12
40 105 1620 810 397 207 103
40 106 16530 8900 4132 2108 1044
40 107 fail fail > 14h 25964 12794

firms our initial assumption that the computational cost will be dominated by
evaluation of (8), and justifies our parallelization approach.
We also note that the computational cost grows linearly with q, but it grows

at a much higher rate with the number of variables n. This is not unexpected,
as problems of larger size require more function evaluations to compute the
discrete gradients. The cost becomes prohibitive for portfolios with 40 secu-
rities or more (on a single processor), but when executed in parallel, optimal
portfolio can be found in a reasonable time on a small computer cluster. In
contrast, portfolio optimization by using linear programming (problem B’) is
computationally infeasible.
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Figure 1. Parallelization of the computation of the objective function.

8 Conclusion

We have compared various techniques for computation of the Conditional
Value-at-Risk and portfolio optimization with respect to this risk measure.
We conclude that the use of modern non-smooth optimization methods offers
significant advantages compared to linear programming approach in the cases
of modest size portfolios and a large number of scenarios. These advantages in-
clude a much shorter computing time (by several orders of magnitude), lower
memory requirements, greater accuracy (by using a much larger number of
scenarios), straightforward parallelization of the algorithms, and an option to
deal with non-linear portfolios.
We described the discrete gradient method of non-smooth optimization, and

its adaptation for problems with linear constraints. Such constraints arise in
portfolio optimization as balance and non-negativity constraints, and also from
user requirements, such as obtaining mean return at least R. Our study shows
that this method is suitable for optimization of small to medium size portfolios
with respect to CVaR. We also studied its parallel execution on computer
clusters, and established the effectiveness of this approach.
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