44 research outputs found

    Immune checkpoint inhibitor treatment and ophthalmologist consultations in patients with malignant melanoma or lung cancer—A nationwide cohort study

    Get PDF
    SIMPLE SUMMARY: Immune checkpoint inhibitors are increasingly being used for treating advanced malignant cutaneous melanoma and lung cancer. Immune-related side effects in multiple organs are common but the frequencies of ophthalmic side effects in national cohorts of unselected patients are undescribed. This study estimated frequencies of first-time ophthalmologist consultations and inflammatory conditions in consecutive patients with malignant melanoma or lung cancer treated with immune checkpoint inhibitors in Denmark from 2011–2018. The one-year risks of first-time consultation and ocular inflammation were 6% and 1%, respectively. These numbers were increased compared with patients with the same type of cancer who were not treated with immune checkpoint inhibitiors. ABSTRACT: Purpose: To estimate the frequency of first-time ocular events in patients treated with immune checkpoint inhibitors (ICI). Methods: Patients with cancer in 2011–2018 in Denmark were included and followed. The outcomes were first-time ophthalmologist consultation and ocular inflammation. One-year absolute risks of outcomes and hazard ratios were estimated. Results: 112,289 patients with cancer were included, and 2195 were treated with ICI. One year after the first ICI treatment, 6% of the patients with cancer, 5% and 8% of the lung cancer (LC) and malignant cutaneous melanoma (MM) patients, respectively, had a first-time ophthalmologist consultation. The risk of ocular inflammation was 1% (95% confidence interval (CI) 0.4–1.2). Among patients with MM, ICI was associated with ocular inflammation in women (HR 12.6 (95% CI 5.83–27.31) and men (4.87 (95% CI 1.79–13.29)). Comparing patients with and without ICI treatment, the risk of first-time ophthalmologist consultation was increased in patients with LC (HR 1.74 (95% CI 1.29–2.34) and MM (HR 3.21 (95% CI 2.31–4.44). Conclusions: The one-year risks of first-time ophthalmologist consultation and ocular inflammation were 6% and 1%, respectively, in patients treated with ICI. In patients with LC and MM, the risk was increased in patients with ICI compared with patients without ICI

    Serum Neurofilament Light Trajectories and Their Relation to Subclinical Radiological Disease Activity in Relapsing Multiple Sclerosis Patients in the APLIOS Trial

    Get PDF
    Introduction: Several studies have described prognostic value of serum neurofilament light chain (sNfL) at the group level in relapsing multiple sclerosis (RMS) patients. Here, we aimed to explore the temporal association between sNfL and development of subclinical disease activity as assessed by magnetic resonance imaging (MRI) at the group level and evaluate the potential of sNfL as a biomarker for capturing subclinical disease activity in individual RMS patients. Methods: In the 12-week APLIOS study, patients (N = 284) received subcutaneous ofatumumab 20 mg. Frequent sNfL sampling (14 time points over 12 weeks) and monthly MRI scans enabled key analyses including assessment of the group-level temporal relationship of sNfL levels with on-study subclinical development of gadolinium-enhancing (Gd +)T1 lesions. Prognostic value of baseline sNfL ("high" vs. "low") level for subsequent on-study clinical relapse or Gd + T1 activity was assessed. Individual patient-level development of on-study Gd + T1 lesions wascompared across three predictors: baseline Gd + T1 lesion number, baseline sNfL ("high" vs. "low"), and time-matched sNfL. Results: In patients developing Gd + T1 lesions at week 4 (absent at baseline), sNfL levels increased during the month preceding the week-4 MRI scan and then gradually decreased back to baseline. High versus low baseline sNfL conferred increased risk of subsequent on-study clinical relapse or Gd + T1 activity (HR, 2.81; p < 0.0001) in the overall population and, notably, also in the patients without baseline Gd + T1 lesions (HR, 2.48; p = 0.0213). Individual patient trajectories revealed a marked difference in Gd + T1 lesions between patients with the ten highest vs. lowest baseline sNfL levels (119 vs. 19 lesions). Prognostic value of baseline or time-matched sNfL for on-study Gd + T1 lesions was comparable to that of the number of baseline MRI Gd + T1 lesions. Conclusions: sNfL measurement may have utility in capturing and monitoring subclinical disease activity in RMS patients. sNfL assessments could complement regular MRI scans and may provide an alternative when MRI assessment is not feasible. ClinicalTrials.gov: NCT03560739. Classification of Evidence: This study provides class I evidence that serum neurofilament light may be used as a biomarker for monitoring subclinical disease activity in relapsing multiple sclerosis patients, as shown by its elevation in the weeks preceding the development of new gadolinium-enhancing T1 lesion activity

    PLCL1 rs7595412 variation is not associated with hip bone size variation in postmenopausal Danish women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone size (BS) variation is under strong genetic control and plays an important role in determining bone strength and fracture risk. Recently, a genome-wide association study identified polymorphisms associated with hip BS variation in the <it>PLCL1 </it>(phospholipase c-like 1) locus. Carriers of the major A allele of the most significant polymorphism, rs7595412, have around 17% larger hip BS than non-carriers. We therefore hypothesized that this polymorphism may also influence postmenopausal complications.</p> <p>Methods</p> <p>The effects of rs7595412 on hip BS, bone mineral density (BMD), vertebral fractures, serum Crosslaps and osteocalcin levels were analyzed in 1,191 postmenopausal Danish women.</p> <p>Results</p> <p>This polymorphism had no influence on hip and spine BS as well as on femur and spine BMD. Women carrying at least one copy of the A allele had lower levels of serum osteocalcin as compared with those homozygous for the G allele (p = 0.03) whereas no effect on serum Crosslaps was detected. Furthermore, women homozygous for the A allele were more affected by vertebral fractures than those carrying at least one copy of the G allele (p = 0.04).</p> <p>Conclusions</p> <p>In postmenopausal women, our results suggest that the <it>PLCL1 </it>rs7595412 polymorphism has no obvious effect on hip BS or BMD but may be nominally associated with increased proportion of vertebral fracture and increased levels of osteocalcin.</p

    Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calcitonin has been demonstrated to have chondroprotective effects under pre-clinical settings. It is debated whether this effect is mediated through subchondral-bone, directly on cartilage or both in combination. We investigated possible direct effects of salmon calcitonin on proteoglycans and collagen-type-II synthesis in osteoarthritic (OA) cartilage.</p> <p>Methods</p> <p>Human OA cartilage explants were cultured with salmon calcitonin [100 pM-100 nM]. Direct effects of calcitonin on articular cartilage were evaluated by 1) measurement of proteoglycan synthesis by incorporation of radioactive labeled <sup>35</sup>SO<sub>4 </sub>[5 μCi] 2) quantification of collagen-type-II formation by pro-peptides of collagen type II (PIINP) ELISA, 3) QPCR expression of the calcitonin receptor in OA chondrocytes using four individual primer pairs, 4) activation of the cAMP signaling pathway by EIA and, 5) investigations of metabolic activity by AlamarBlue.</p> <p>Results</p> <p>QPCR analysis and subsequent sequencing confirmed expression of the calcitonin receptor in human chondrocytes. All doses of salmon calcitonin significantly elevated cAMP levels (P < 0.01 and P < 0.001). Calcitonin significantly and concentration-dependently [100 pM-100 nM] induced proteoglycan synthesis measured by radioactive <sup>35</sup>SO<sub>4 </sub>incorporation, with a 96% maximal induction at 10 nM (P < 0.001) corresponding to an 80% induction of 100 ng/ml IGF, (P < 0.05). In alignment with calcitonin treatments [100 pM-100 nM] resulted in 35% (P < 0.01) increased PIINP levels.</p> <p>Conclusion</p> <p>Calcitonin treatment increased proteoglycan and collagen synthesis in human OA cartilage. In addition to its well-established effect on subchondral bone, calcitonin may prove beneficial to the management of joint diseases through direct effects on chondrocytes.</p

    Identification of the calcitonin receptor in osteoarthritic chondrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preclinical and clinical studies have shown that salmon calcitonin has cartilage protective effects in joint degenerative diseases, such as osteoarthritis (OA). However, the presence of the calcitonin receptor (CTR) in articular cartilage chondrocytes is yet to be identified. In this study, we sought to further investigate the expression of the CTR in naïve human OA articular chondrocytes to gain further confirmation of the existents of the CTR in articular cartilage.</p> <p>Methods</p> <p>Total RNA was purified from primary chondrocytes from articular cartilage biopsies from four OA patients undergoing total knee replacement. High quality cDNA was produced using a dedicated reverse transcription polymerase chain reaction (RT-PCR) protocol. From this a nested PCR assay amplifying the full coding region of the CTR mRNA was completed. Western blotting and immunohistochemistry were used to characterize CTR protein on protein level in chondrocytes.</p> <p>Results</p> <p>The full coding transcript of the CTR isoform 2 was identified in all four individuals. DNA sequencing revealed a number of allelic variants of the gene including two potentially novel polymorphisms: a frame shift mutation, +473del, producing a shorter form of the receptor protein, and a single nucleotide polymorphism in the 3' non coding region of the transcript, +1443 C>T. A 53 kDa protein band, consistent with non-glycosylated CTR isoform 2, was detected in chondrocytes with a similar size to that expressed in osteoclasts. Moreover the CTR was identified in the plasma membrane and the chondrocyte lacuna of both primary chondrocytes and OA cartilage section.</p> <p>Conclusions</p> <p>Human OA articular cartilage chondrocytes do indeed express the CTR, which makes the articular a pharmacological target of salmon calcitonin. In addition, the results support previous findings suggesting that calcitonin has a direct anabolic effect on articular cartilage.</p

    Job durations and the job search model : a two-country, multi-sample analysis

    Get PDF
    Abstract: This paper assesses whether a parsimonious partial equilibrium job search model with on-the-job search can reproduce observed job durations and transitions to other jobs and to nonemployment. We allow for unobserved heterogeneity across individuals in key structural parameters. Observed heterogeneity and life cycle effects are accounted for by estimating separate models for flow samples of labor market entrants and stock samples of “mature” workers with 10-11 years of experience, by stratifying on education length and by allowing for non-search related wage growth due to accumulation of labor market experience. We use comparable register based panel data for two countries, Denmark and Norway. All workers are followed for 6 years. The model fits observed job-to-job and job-to-nonemployment hazard functions well for most samples with a better fit for entrants than for mature workers, especially for the job-to-job hazard function. We find important differences in structural parameters between entrants and mature workers and we find that the Norwegian labor market is more frictional than the Danish labor market. Keywords: Job Mobility, Job Durations JEL classification: J31, J63This paper has received financial support from the Norwegian Research Council (grants 156032 and 156110

    Job durations and the job search model : a two-country, multi-sample analysis

    No full text
    Abstract: This paper assesses whether a parsimonious partial equilibrium job search model with on-the-job search can reproduce observed job durations and transitions to other jobs and to nonemployment. We allow for unobserved heterogeneity across individuals in key structural parameters. Observed heterogeneity and life cycle effects are accounted for by estimating separate models for flow samples of labor market entrants and stock samples of “mature” workers with 10-11 years of experience, by stratifying on education length and by allowing for non-search related wage growth due to accumulation of labor market experience. We use comparable register based panel data for two countries, Denmark and Norway. All workers are followed for 6 years. The model fits observed job-to-job and job-to-nonemployment hazard functions well for most samples with a better fit for entrants than for mature workers, especially for the job-to-job hazard function. We find important differences in structural parameters between entrants and mature workers and we find that the Norwegian labor market is more frictional than the Danish labor market. Keywords: Job Mobility, Job Durations JEL classification: J31, J6
    corecore