591 research outputs found

    Vortex density fluctuations in quantum turbulence

    Full text link
    We compute the frequency spectrum of turbulent superfluid vortex density fluctuations and obtain the same Kolmogorov scaling which has been observed in a recent experiment in Helium-4. We show that the scaling can be interpreted in terms of the spectrum of reconnecting material lines. The calculation is performed using a vortex tree algorithm which considerably speeds up the evaluation of Biot-Savart integrals.Comment: 7 Pages, 7 figure

    Quasiclassical and ultraquantum decay of superfluid turbulence

    Full text link
    This letter addresses the question which, after a decade-long discussion, still remains open: what is the nature of the ultraquantum regime of decay of quantum turbulence? The model developed in this work reproduces both the ultraquantum and the quasiclassical decay regimes and explains their hydrodynamical natures. In the case where turbulence is generated by forcing at some intermediate lengthscale, e.g. by the beam of vortex rings in the experiment of Walmsley and Golov [Phys. Rev. Lett. {\bf 100}, 245301 (2008)], we explained the mechanisms of generation of both ultraquantum and quasiclassical regimes. We also found that the anisotropy of the beam is important for generating the large scale motion associated with the quasiclassical regime

    Quantum vortex reconnections

    Get PDF
    We study reconnections of quantum vortices by numerically solving the governing Gross-Pitaevskii equation. We find that the minimum distance between vortices scales differently with time before and after the vortex reconnection. We also compute vortex reconnections using the Biot-Savart law for vortex filaments of infinitesimal thickness, and find that, in this model, reconnection are time-symmetric. We argue that the likely cause of the difference between the Gross-Pitaevskii model and the Biot-Savart model is the intense rarefaction wave which is radiated away from a Gross-Pitaeveskii reconnection. Finally we compare our results to experimental observations in superfluid helium, and discuss the different length scales probed by the two models and by experiments.Comment: 23 Pages, 12 Figure

    The Kelvin-wave cascade in the vortex filament model

    Get PDF
    The energy transfer mechanism in zero temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting Kelvin-waves to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with nonlocal six-wave Kelvin wave interactions as proposed by L'vov and Nazarenko.Comment: 6 pages, 6 figure

    Intravenous fluid therapy in the adult surgical patient

    Get PDF

    Visualizing Pure Quantum Turbulence in Superfluid 3^{3}He: Andreev Reflection and its Spectral Properties

    Get PDF
    Superfluid 3^3He-B in the zero-temperature limit offers a unique means of studying quantum turbulence by the Andreev reflection of quasiparticle excitations by the vortex flow fields. We validate the experimental visualization of turbulence in 3^3He-B by showing the relation between the vortex-line density and the Andreev reflectance of the vortex tangle in the first simulations of the Andreev reflectance by a realistic 3D vortex tangle, and comparing the results with the first experimental measurements able to probe quantum turbulence on length scales smaller than the inter-vortex separation.Comment: 5 pages, 4 figures, and Supplemental Material (2 pages, 2 figures
    corecore