211 research outputs found

    Resonance-like coherent production of a pion pair in the reaction pdpdππpd \rightarrow pd\pi\pi in the GeV region

    Full text link
    The reaction p+dp+d+Xp + d \rightarrow p + d + X was studied at 0.8-2.0 GeV proton beam energies with the ANKE magnetic spectrometer at the COSY synchrotron storage ring. The proton-deuteron pairs emerging with high momenta, 0.6-1.8 GeV/cc, were detected at small angles with respect to the proton beam. Distribution over the reaction missing mass MxM_x reveals a local enhancement near the threshold of the pion pair production specific for the so-called ABC effect. The enhancement has a structure of a narrow bump placed above a smooth continuum. The invariant mass of the dππd\pi\pi system in this enhancement region exhibits a resonance-like peak at Mdππ2.36M_{d\pi\pi} \approx 2.36 GeV/c2c^2 with the width Γ0.10\Gamma \approx 0.10 GeV/c2c^2. A possible interpretation of these features is discussed.Comment: 14 pages, 16 figures, submitted to Eur. Phys. J. A. v2: Added references [42,43] in section IV.A. v3: revised version according to referee remarks v4: revised version according to referee remark

    Measurement of the analyzing powers in pd elastic and pn quasi-elastic scattering at small angles

    Full text link
    The analyzing powers in proton-deuteron elastic and proton-neutron quasi-elastic scattering have been measured at small angles using a polarized proton beam at the COSY storage ring incident on an unpolarized deuterium target. The data were taken at 796MeV and five higher energies from 1600MeV to 2400MeV. The analyzing power in pd elastic scattering was studied by detecting the low energy recoil deuteron in telescopes placed symmetrically in the COSY plane to the left and right of the beam whereas for pn quasi-elastic scattering a low energy proton was registered in one of the telescopes in coincidence with a fast scattered proton measured in the ANKE magnetic spectrometer. Though the experiment explores new domains, the results are consistent with the limited published information.Comment: 10 pages with 8 figure

    Measurement of the analysing power in proton-proton elastic scattering at small angles

    Get PDF
    The proton analysing power in pp\vec{p}p elastic scattering has been measured at small angles at COSY-ANKE at 796 MeV and five other beam energies between 1.6 and 2.4 GeV using a polarised proton beam. The asymmetries obtained by detecting the fast proton in the ANKE forward detector or the slow recoil proton in a silicon tracking telescope are completely consistent. Although the analysing power results agree well with the many published data at 796 MeV, and also with the most recent partial wave solution at this energy, the ANKE data at the higher energies lie well above the predictions of this solution at small angles. An updated phase shift analysis that uses the ANKE results together with the World data leads to a much better description of these new measurements.Comment: 5 pages, 3 figure

    Measuring the Polarization of a Rapidly Precessing Deuteron Beam

    Get PDF
    This paper describes a time-marking system that enables a measurement of the in-plane (horizontal) polarization of a 0.97-GeV/c deuteron beam circulating in the Cooler Synchrotron (COSY) at the Forschungszentrum J\"ulich. The clock time of each polarimeter event is used to unfold the 120-kHz spin precession and assign events to bins according to the direction of the horizontal polarization. After accumulation for one or more seconds, the down-up scattering asymmetry can be calculated for each direction and matched to a sinusoidal function whose magnitude is proportional to the horizontal polarization. This requires prior knowledge of the spin tune or polarization precession rate. An initial estimate is refined by re-sorting the events as the spin tune is adjusted across a narrow range and searching for the maximum polarization magnitude. The result is biased toward polarization values that are too large, in part because of statistical fluctuations but also because sinusoidal fits to even random data will produce sizeable magnitudes when the phase is left free to vary. An analysis procedure is described that matches the time dependence of the horizontal polarization to templates based on emittance-driven polarization loss while correcting for the positive bias. This information will be used to study ways to extend the horizontal polarization lifetime by correcting spin tune spread using ring sextupole fields and thereby to support the feasibility of searching for an intrinsic electric dipole moment using polarized beams in a storage ring. This paper is a combined effort of the Storage Ring EDM Collaboration and the JEDI Collaboration.Comment: 28 pages, 15 figures, prepared for Physical Review ST - Accelerators and Beam

    Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    Get PDF
    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation

    Measurement of the absolute differential cross section of proton-proton elastic scattering at small angles

    Get PDF
    The differential cross section for proton-proton elastic scattering has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12-16 degrees to 25-30 degrees, depending on the energy. Absolute normalisations of typically 3% were achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon a partial wave analysis. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations

    Study of the pdn{pp}s\vec{p}d \to n\{pp\}_{s} charge-exchange reaction using a polarised deuterium target

    Get PDF
    The vector and tensor analysing powers, AyA_y and AyyA_{yy}, of the pdn{pp}s\vec{p}d \to n\{pp\}_{s} charge-exchange reaction have been measured at a beam energy of 600 MeV at the COSY-ANKE facility by using an unpolarised proton beam incident on an internal storage cell target filled with polarised deuterium gas. The low energy recoiling protons were measured in a pair of silicon tracking telescopes placed on either side of the target. Putting a cut of 3 MeV on the diproton excitation energy ensured that the two protons were dominantly in the 1S0^{1}S_{0} state, here denoted by {pp}s\{pp\}_{s}. The polarisation of the deuterium gas was established through measurements in parallel of proton-deuteron elastic scattering. By analysing events where both protons entered the same telescope, the charge-exchange reaction was measured for momentum transfers q160q\geq 160 MeV/cc. These data provide a good continuation of the earlier results at q140q\leq 140 MeV/cc obtained with a polarised deuteron beam. They are also consistent with impulse approximation predictions with little sign evident for any modifications due to multiple scatterings

    Toward polarized antiprotons: Machine development for spin-filtering experiments

    Get PDF
    The paper describes the commissioning of the experimental equipment and the machine studies required for the first spin-filtering experiment with protons at a beam kinetic energy of 49.349.3\,MeV in COSY. The implementation of a low-β\beta insertion made it possible to achieve beam lifetimes of τb=8000\tau_{\rm{b}}=8000\,s in the presence of a dense polarized hydrogen storage-cell target of areal density dt=(5.5±0.2)×1013atoms/cm2d_{\rm t}=(5.5\pm 0.2)\times 10^{13}\,\mathrm{atoms/cm^{2}}. The developed techniques can be directly applied to antiproton machines and allow for the determination of the spin-dependent pˉp\bar{p}p cross sections via spin filtering

    Spin tune mapping as a novel tool to probe the spin dynamics in storage rings

    Get PDF
    Precision experiments, such as the search for electric dipole moments of charged particles using storage rings, demand for an understanding of the spin dynamics with unprecedented accuracy. The ultimate aim is to measure the electric dipole moments with a sensitivity up to 15 orders in magnitude better than the magnetic dipole moment of the stored particles. This formidable task requires an understanding of the background to the signal of the electric dipole from rotations of the spins in the spurious magnetic fields of a storage ring. One of the observables, especially sensitive to the imperfection magnetic fields in the ring is the angular orientation of stable spin axis. Up to now, the stable spin axis has never been determined experimentally, and in addition, the JEDI collaboration for the first time succeeded to quantify the background signals that stem from false rotations of the magnetic dipole moments in the horizontal and longitudinal imperfection magnetic fields of the storage ring. To this end, we developed a new method based on the spin tune response of a machine to artificially applied longitudinal magnetic fields. This novel technique, called \textit{spin tune mapping}, emerges as a very powerful tool to probe the spin dynamics in storage rings. The technique was experimentally tested in 2014 at the cooler synchrotron COSY, and for the first time, the angular orientation of the stable spin axis at two different locations in the ring has been determined to an unprecedented accuracy of better than 2.8μ2.8\murad.Comment: 32 pages, 15 figures, 7 table
    corecore