391 research outputs found

    Fungemia Associated with Left Ventricular Assist Device Support

    Full text link
    Objective: Infections remain an important complication of left ventricular assist device (LVAD) support. While relatively uncommon, fungal infections present a serious concern given a high association with adverse events including death. We sought to further characterize the epidemiology of fungemias during LVAD support. Methods: Retrospective review of 292 patients receiving LVAD support from October 1996 to April 2009 at the University of Michigan Health System was done. Results: Seven cases of LVAD-associated fungemia were observed during the study period (0.1 infections/1000 days of device support). Five patients had infection with Candida species and two with Aspergillus species. The two patients with Aspergillus infection presented with disseminated disease, quickly dying of multiorgan failure, and sepsis. All five patients with Candida infections were successfully treated with systemic antifungal therapy along with transplantation in four of five patients. The fifth patient is receiving mechanical support as destination therapy. He remains on long-term suppression with high-dose fluconazole. Conclusions: Fungal infections appear to be a rare but serious complication of LVAD support. Future studies should aim to improve our understanding of risk factors for fungal infection during mechanical support, especially disseminated Aspergillus . Short-term perioperative antifungal prophylaxis with fluconazole appears to be an effective and reasonable approach to prevention. (J Card Surg 2009;24:763–765)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78694/1/j.1540-8191.2009.00919.x.pd

    Measurement of the analyzing powers in pd elastic and pn quasi-elastic scattering at small angles

    Full text link
    The analyzing powers in proton-deuteron elastic and proton-neutron quasi-elastic scattering have been measured at small angles using a polarized proton beam at the COSY storage ring incident on an unpolarized deuterium target. The data were taken at 796MeV and five higher energies from 1600MeV to 2400MeV. The analyzing power in pd elastic scattering was studied by detecting the low energy recoil deuteron in telescopes placed symmetrically in the COSY plane to the left and right of the beam whereas for pn quasi-elastic scattering a low energy proton was registered in one of the telescopes in coincidence with a fast scattered proton measured in the ANKE magnetic spectrometer. Though the experiment explores new domains, the results are consistent with the limited published information.Comment: 10 pages with 8 figure

    Measurement of the analysing power in proton-proton elastic scattering at small angles

    Get PDF
    The proton analysing power in pp\vec{p}p elastic scattering has been measured at small angles at COSY-ANKE at 796 MeV and five other beam energies between 1.6 and 2.4 GeV using a polarised proton beam. The asymmetries obtained by detecting the fast proton in the ANKE forward detector or the slow recoil proton in a silicon tracking telescope are completely consistent. Although the analysing power results agree well with the many published data at 796 MeV, and also with the most recent partial wave solution at this energy, the ANKE data at the higher energies lie well above the predictions of this solution at small angles. An updated phase shift analysis that uses the ANKE results together with the World data leads to a much better description of these new measurements.Comment: 5 pages, 3 figure

    Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    Get PDF
    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation

    Toward polarized antiprotons: Machine development for spin-filtering experiments

    Get PDF
    The paper describes the commissioning of the experimental equipment and the machine studies required for the first spin-filtering experiment with protons at a beam kinetic energy of 49.349.3\,MeV in COSY. The implementation of a low-β\beta insertion made it possible to achieve beam lifetimes of τb=8000\tau_{\rm{b}}=8000\,s in the presence of a dense polarized hydrogen storage-cell target of areal density dt=(5.5±0.2)×1013atoms/cm2d_{\rm t}=(5.5\pm 0.2)\times 10^{13}\,\mathrm{atoms/cm^{2}}. The developed techniques can be directly applied to antiproton machines and allow for the determination of the spin-dependent pˉp\bar{p}p cross sections via spin filtering

    Measurement of the absolute differential cross section of proton-proton elastic scattering at small angles

    Get PDF
    The differential cross section for proton-proton elastic scattering has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12-16 degrees to 25-30 degrees, depending on the energy. Absolute normalisations of typically 3% were achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon a partial wave analysis. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations

    Phase Measurement for Driven Spin Oscillations in a Storage Ring

    Get PDF
    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched 0.97GeV/c0.97\,\textrm{GeV/c} deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles

    Spin tune mapping as a novel tool to probe the spin dynamics in storage rings

    Get PDF
    Precision experiments, such as the search for electric dipole moments of charged particles using storage rings, demand for an understanding of the spin dynamics with unprecedented accuracy. The ultimate aim is to measure the electric dipole moments with a sensitivity up to 15 orders in magnitude better than the magnetic dipole moment of the stored particles. This formidable task requires an understanding of the background to the signal of the electric dipole from rotations of the spins in the spurious magnetic fields of a storage ring. One of the observables, especially sensitive to the imperfection magnetic fields in the ring is the angular orientation of stable spin axis. Up to now, the stable spin axis has never been determined experimentally, and in addition, the JEDI collaboration for the first time succeeded to quantify the background signals that stem from false rotations of the magnetic dipole moments in the horizontal and longitudinal imperfection magnetic fields of the storage ring. To this end, we developed a new method based on the spin tune response of a machine to artificially applied longitudinal magnetic fields. This novel technique, called \textit{spin tune mapping}, emerges as a very powerful tool to probe the spin dynamics in storage rings. The technique was experimentally tested in 2014 at the cooler synchrotron COSY, and for the first time, the angular orientation of the stable spin axis at two different locations in the ring has been determined to an unprecedented accuracy of better than 2.8μ2.8\murad.Comment: 32 pages, 15 figures, 7 table

    Study of the pdn{pp}s\vec{p}d \to n\{pp\}_{s} charge-exchange reaction using a polarised deuterium target

    Get PDF
    The vector and tensor analysing powers, AyA_y and AyyA_{yy}, of the pdn{pp}s\vec{p}d \to n\{pp\}_{s} charge-exchange reaction have been measured at a beam energy of 600 MeV at the COSY-ANKE facility by using an unpolarised proton beam incident on an internal storage cell target filled with polarised deuterium gas. The low energy recoiling protons were measured in a pair of silicon tracking telescopes placed on either side of the target. Putting a cut of 3 MeV on the diproton excitation energy ensured that the two protons were dominantly in the 1S0^{1}S_{0} state, here denoted by {pp}s\{pp\}_{s}. The polarisation of the deuterium gas was established through measurements in parallel of proton-deuteron elastic scattering. By analysing events where both protons entered the same telescope, the charge-exchange reaction was measured for momentum transfers q160q\geq 160 MeV/cc. These data provide a good continuation of the earlier results at q140q\leq 140 MeV/cc obtained with a polarised deuteron beam. They are also consistent with impulse approximation predictions with little sign evident for any modifications due to multiple scatterings

    Phase locking the spin precession in a storage ring

    Get PDF
    This letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97 GeV/cc bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (121\approx 121 kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a one standard deviation range of σ=0.21\sigma = 0.21 rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26 mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles
    corecore