1,674 research outputs found

    Hydrodynamical Approach to Quantum Physics

    Get PDF

    The Lattice Structure of Clay Minerals

    Get PDF

    Truncated Harmonic Osillator and Parasupersymmetric Quantum Mechanics

    Get PDF
    We discuss in detail the parasupersymmetric quantum mechanics of arbitrary order where the parasupersymmetry is between the normal bosons and those corresponding to the truncated harmonic oscillator. We show that even though the parasusy algebra is different from that of the usual parasusy quantum mechanics, still the consequences of the two are identical. We further show that the parasupersymmetric quantum mechanics of arbitrary order p can also be rewritten in terms of p supercharges (i.e. all of which obey Qi2=0Q_i^{2} = 0). However, the Hamiltonian cannot be expressed in a simple form in terms of the p supercharges except in a special case. A model of conformal parasupersymmetry is also discussed and it is shown that in this case, the p supercharges, the p conformal supercharges along with Hamiltonian H, conformal generator K and dilatation generator D form a closed algebra.Comment: 9 page

    On the Crystal Structure of Phthalimide. Part I.-Determination of the Space-Group

    Get PDF

    Secondary K-Absorption Edges of Cobalt Salts in Solid and Liquid Solutions

    Get PDF

    New Discoveries from the Arecibo 327 MHz Drift Pulsar Survey Radio Transient Search

    Get PDF
    We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently, isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range 23.586.623.5 - 86.6 pc cm3^{-3} and periods in the range 0.1723.9010.172 - 3.901 s. The new pulsars have DMs in the range 23.6133.323.6 - 133.3 pc cm3^{-3} and periods in the range 1.2495.0121.249 - 5.012 s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of 10510^5 day1^{-1} for bursts with a width of 10 ms and flux density 83\gtrsim 83 mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models.Comment: 41 pages, 16 figures, 4 tables, accepted by ApJ; added minor corrections to final ApJ proo

    DISTANCE MEASURES IN POST HOC COMPARISONS OF TEMPERATURE GERMINATION QUADRATIC RESPONSE SURFACES

    Get PDF
    Generalized quadratic response surface models are used to describe seed germination at diurnally alternating cold and warm incubation temperatures for three Great Basin exotic plant species. The method of the F-statistic SSdrop is applied to determine whether the response surface models are equal. Two proposed distance measures are used as modified multiple comparison techniques for determining differences between surfaces. These measures prove useful in distinguishing between the species showing the highest germination response and the one showing the lowest response to the incubation temperature ranges studied

    Cosmology and Static Spherically Symmetric solutions in D-dimensional Scalar Tensor Theories: Some Novel Features

    Full text link
    We consider scalar tensor theories in D-dimensional spacetime, D \ge 4. They consist of metric and a non minimally coupled scalar field, with its non minimal coupling characterised by a function. The probes couple minimally to the metric only. We obtain vacuum solutions - both cosmological and static spherically symmetric ones - and study their properties. We find that, as seen by the probes, there is no singularity in the cosmological solutions for a class of functions which obey certain constraints. It turns out that for the same class of functions, there are static spherically symmetric solutions which exhibit novel properties: {\em e.g.} near the ``horizon'', the gravitational force as seen by the probe becomes repulsive.Comment: Revtex. 21 pages. Version 2: More references added. Version 3: Issues raised by the referee are addressed. Results unchanged. Title modified; a new subsection and more references added. Verison to appear in Physical Review
    corecore