188 research outputs found
Risk, ambiguity and quantum decision theory
In the present article we use the quantum formalism to describe the effects
of risk and ambiguity in decision theory. The main idea is that the
probabilities in the classic theory of expected utility are estimated
probabilities, and thus do not follow the classic laws of probability theory.
In particular, we show that it is possible to use consistently the classic
expected utility formula, where the probability associated to the events are
computed with the equation of quantum interference. Thus we show that the
correct utility of a lottery can be simply computed by adding to the classic
expected utility a new corrective term, the uncertainty utility, directly
connected with the quantum interference term.Comment: 1 figur
A Quantum-Conceptual Explanation of Violations of Expected Utility in Economics
The expected utility hypothesis is one of the building blocks of classical
economic theory and founded on Savage's Sure-Thing Principle. It has been put
forward, e.g. by situations such as the Allais and Ellsberg paradoxes, that
real-life situations can violate Savage's Sure-Thing Principle and hence also
expected utility. We analyze how this violation is connected to the presence of
the 'disjunction effect' of decision theory and use our earlier study of this
effect in concept theory to put forward an explanation of the violation of
Savage's Sure-Thing Principle, namely the presence of 'quantum conceptual
thought' next to 'classical logical thought' within a double layer structure of
human thought during the decision process. Quantum conceptual thought can be
modeled mathematically by the quantum mechanical formalism, which we illustrate
by modeling the Hawaii problem situation, a well-known example of the
disjunction effect, and we show how the dynamics in the Hawaii problem
situation is generated by the whole conceptual landscape surrounding the
decision situation.Comment: 9 pages, no figure
Preliminary design of a short-medium range windowless aircraft
This paper describes a new aircraft concept, where all windows, except those for emergency exits, are replaced with simulated windows, which consist of monitors connected to external cameras to overcome the discomfort for the passenger due to the absence of real windows. This concept is developed through an analytical method to estimate the potential advantages for the environment and for airline companies deriving from a windowless configuration for a short-medium range aircraft, within the boundaries of the preliminary design. Actually, the reduction in weight is directly linked to the reduction in fuel consumption, providing advantages in terms of operating costs and emissions of carbon dioxide. The method is applied to four models of short and medium range aircraft, namely Boeing 737\u2013800, Airbus 320, ATR72 and Embraer 190. The results show the benefits of a windowless configuration that become very positive for the operating life of an aircraft and the total fleet, potentially leading to the saving of millions of tons of carbon dioxide every year when applied to the whole fleet of the analyzed aircraft
Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory
Inspired by a quantum mechanical formalism to model concepts and their
disjunctions and conjunctions, we put forward in this paper a specific
hypothesis. Namely that within human thought two superposed layers can be
distinguished: (i) a layer given form by an underlying classical deterministic
process, incorporating essentially logical thought and its indeterministic
version modeled by classical probability theory; (ii) a layer given form under
influence of the totality of the surrounding conceptual landscape, where the
different concepts figure as individual entities rather than (logical)
combinations of others, with measurable quantities such as 'typicality',
'membership', 'representativeness', 'similarity', 'applicability', 'preference'
or 'utility' carrying the influences. We call the process in this second layer
'quantum conceptual thought', which is indeterministic in essence, and contains
holistic aspects, but is equally well, although very differently, organized
than logical thought. A substantial part of the 'quantum conceptual thought
process' can be modeled by quantum mechanical probabilistic and mathematical
structures. We consider examples of three specific domains of research where
the effects of the presence of quantum conceptual thought and its deviations
from classical logical thought have been noticed and studied, i.e. economics,
decision theory, and concept theories and which provide experimental evidence
for our hypothesis.Comment: 14 page
EXPERIMENTAL PROCEDURES FOR PRELIMINARY USER CENTRED EVALUATION OF REGIONAL AICRAFT CABIN INTERIORS IN VIRTUAL REALITY
One of the main aims of the Horizon 2020 CASTLE (Cabin System Design Towards Passenger Wellbeing) project is to deliver innovative cabin interiors solutions that maximize the comfort and wellbeing of passengers in the next future. In order to achieve such an ambitious objective, an effective HCD (Human Centred Design) approach has been put in place to derive a Human Response Model based on a holistic assessment of comfort.
Therefore, the overall CASTLE HCD methodology has been conceived to provide different tools and methods to collect data on the impact that the design of each cabin item has on the user from the earliest design stages. One of these tools is represented by the use of 3D mock-ups in Virtual/Augmented Reality environments to capture data on the user\u2019s perception and to rate the level of appraisal inspired by the specific design solution.
In this paper we present the experimental procedures for the Human in the loop simulations in Virtual Reality Environment of the Regional Aircraft solutions provided in the CASTLE Project. First, we introduce the overall procedure plan. Then, we describe the work done for the creation of the Virtual Environment for different scenarios (user standing in the cabin, Galley, Lavatory) and for the subjective evaluation of these cabin items
Quantum Experimental Data in Psychology and Economics
We prove a theorem which shows that a collection of experimental data of
probabilistic weights related to decisions with respect to situations and their
disjunction cannot be modeled within a classical probabilistic weight structure
in case the experimental data contain the effect referred to as the
'disjunction effect' in psychology. We identify different experimental
situations in psychology, more specifically in concept theory and in decision
theory, and in economics (namely situations where Savage's Sure-Thing Principle
is violated) where the disjunction effect appears and we point out the common
nature of the effect. We analyze how our theorem constitutes a no-go theorem
for classical probabilistic weight structures for common experimental data when
the disjunction effect is affecting the values of these data. We put forward a
simple geometric criterion that reveals the non classicality of the considered
probabilistic weights and we illustrate our geometrical criterion by means of
experimentally measured membership weights of items with respect to pairs of
concepts and their disjunctions. The violation of the classical probabilistic
weight structure is very analogous to the violation of the well-known Bell
inequalities studied in quantum mechanics. The no-go theorem we prove in the
present article with respect to the collection of experimental data we consider
has a status analogous to the well known no-go theorems for hidden variable
theories in quantum mechanics with respect to experimental data obtained in
quantum laboratories. For this reason our analysis puts forward a strong
argument in favor of the validity of using a quantum formalism for modeling the
considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure
Augmented reality technology selection based on integrated QFD-AHP model
In the last decade, Augmented Reality has become increasingly popular. As improved performances are gathered in terms of mature hardware and software tools, we are observing the stemming of a huge number of applications of this technology both in the entertainment and in the industrial domains. On the one hand, such applications are usually claimed to bring benefits in terms of productivity or enhancement of the human\u2019s capability to perform tasks. On the other hand, researchers and developers seem not to adequately consider the different meanings that AR assumes when implemented through visualization devices that can differ significantly in nature and in their capability to provide a mixed real-virtual scenario. In this paper, we describe a user-centred method based on an integrated QFD-AHP approach to select the best visualization display technology with regard to a specific application context. The aim is to establish a repeatable and documented process for the identification of the technology that best suits and mitigates the acceptability risks of the transition from a legacy working environment to an AR based operational environment. The method has been developed in the framework of the RETINA (Resilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision) project involving the end users, in this case, air traffic controllers. Nevertheless, it can be generalised and applied to other contexts of use. Furthermore, in order to be resilient to the fast, technological development in AR, it can be used to update the results as improvements arise in the performance level of the display devices in a specific technology
Preliminary user centred evaluation of regional aircraft cabin interiors in virtual reality
The main aim of the CASTLE (Cabin System Design Towards Passenger Wellbeing) European project is to deliver innovative interiors solutions that maximize the comfort and wellbeing of passengers in the next future. To achieve such objective, an effective HCD (Human Centred Design) approach has been employed to derive a Human Response Model based on a holistic assessment of comfort. The overall methodology has been conceived to provide different tools and methods to collect data on the impact that the design of each cabin item has on the user from the earliest design stages. One of these tools is represented by using 3D virtual mock-ups to capture data on the user\u2019s perception and to rate the level of appreciation inspired by the specific design. In this paper we present the experimental procedures and the results from a preliminary experimental campaign of Human in the loop simulations in Virtual/Augmented Reality of a Regional Aircraft
Evaluation of augmented reality tools for the provision of tower air traffic control using an ecological interface design
One of the major problems faced by the growth of air traffic in the last decade is the limited capacity of the runway especially during low visibility procedures (LVP) due to fog and bad weather. To solve this issue, the project \u201cResilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision\u201d (RETINA) project, a two-years exploratory research project, under SESAR2020 program, proposes to use new Synthetic Vision (SV) and Augmented Reality (AR) technologies for the tower controllers to allow them to conduct safe operations under any Meteorological Conditions while maintaining a high runway throughput, equal to good visibility. In this paper we introduce the Ecological Interface Design (EID) as a methodology to investigate the potential and applicability of SV tools and Virtual/Augmented Reality (V/AR) display techniques for the Air Traffic Control (ATC) service provision by the airport control tower. We explain how the EID framework can be used in RETINA, we experiment the framework on a suitable airport and we provide the EID results comparing normal and LVP conditions with operations using RETINA technologies
- …
