188 research outputs found

    Risk, ambiguity and quantum decision theory

    Full text link
    In the present article we use the quantum formalism to describe the effects of risk and ambiguity in decision theory. The main idea is that the probabilities in the classic theory of expected utility are estimated probabilities, and thus do not follow the classic laws of probability theory. In particular, we show that it is possible to use consistently the classic expected utility formula, where the probability associated to the events are computed with the equation of quantum interference. Thus we show that the correct utility of a lottery can be simply computed by adding to the classic expected utility a new corrective term, the uncertainty utility, directly connected with the quantum interference term.Comment: 1 figur

    A Quantum-Conceptual Explanation of Violations of Expected Utility in Economics

    Get PDF
    The expected utility hypothesis is one of the building blocks of classical economic theory and founded on Savage's Sure-Thing Principle. It has been put forward, e.g. by situations such as the Allais and Ellsberg paradoxes, that real-life situations can violate Savage's Sure-Thing Principle and hence also expected utility. We analyze how this violation is connected to the presence of the 'disjunction effect' of decision theory and use our earlier study of this effect in concept theory to put forward an explanation of the violation of Savage's Sure-Thing Principle, namely the presence of 'quantum conceptual thought' next to 'classical logical thought' within a double layer structure of human thought during the decision process. Quantum conceptual thought can be modeled mathematically by the quantum mechanical formalism, which we illustrate by modeling the Hawaii problem situation, a well-known example of the disjunction effect, and we show how the dynamics in the Hawaii problem situation is generated by the whole conceptual landscape surrounding the decision situation.Comment: 9 pages, no figure

    Preliminary design of a short-medium range windowless aircraft

    Get PDF
    This paper describes a new aircraft concept, where all windows, except those for emergency exits, are replaced with simulated windows, which consist of monitors connected to external cameras to overcome the discomfort for the passenger due to the absence of real windows. This concept is developed through an analytical method to estimate the potential advantages for the environment and for airline companies deriving from a windowless configuration for a short-medium range aircraft, within the boundaries of the preliminary design. Actually, the reduction in weight is directly linked to the reduction in fuel consumption, providing advantages in terms of operating costs and emissions of carbon dioxide. The method is applied to four models of short and medium range aircraft, namely Boeing 737\u2013800, Airbus 320, ATR72 and Embraer 190. The results show the benefits of a windowless configuration that become very positive for the operating life of an aircraft and the total fleet, potentially leading to the saving of millions of tons of carbon dioxide every year when applied to the whole fleet of the analyzed aircraft

    Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory

    Full text link
    Inspired by a quantum mechanical formalism to model concepts and their disjunctions and conjunctions, we put forward in this paper a specific hypothesis. Namely that within human thought two superposed layers can be distinguished: (i) a layer given form by an underlying classical deterministic process, incorporating essentially logical thought and its indeterministic version modeled by classical probability theory; (ii) a layer given form under influence of the totality of the surrounding conceptual landscape, where the different concepts figure as individual entities rather than (logical) combinations of others, with measurable quantities such as 'typicality', 'membership', 'representativeness', 'similarity', 'applicability', 'preference' or 'utility' carrying the influences. We call the process in this second layer 'quantum conceptual thought', which is indeterministic in essence, and contains holistic aspects, but is equally well, although very differently, organized than logical thought. A substantial part of the 'quantum conceptual thought process' can be modeled by quantum mechanical probabilistic and mathematical structures. We consider examples of three specific domains of research where the effects of the presence of quantum conceptual thought and its deviations from classical logical thought have been noticed and studied, i.e. economics, decision theory, and concept theories and which provide experimental evidence for our hypothesis.Comment: 14 page

    EXPERIMENTAL PROCEDURES FOR PRELIMINARY USER CENTRED EVALUATION OF REGIONAL AICRAFT CABIN INTERIORS IN VIRTUAL REALITY

    Get PDF
    One of the main aims of the Horizon 2020 CASTLE (Cabin System Design Towards Passenger Wellbeing) project is to deliver innovative cabin interiors solutions that maximize the comfort and wellbeing of passengers in the next future. In order to achieve such an ambitious objective, an effective HCD (Human Centred Design) approach has been put in place to derive a Human Response Model based on a holistic assessment of comfort. Therefore, the overall CASTLE HCD methodology has been conceived to provide different tools and methods to collect data on the impact that the design of each cabin item has on the user from the earliest design stages. One of these tools is represented by the use of 3D mock-ups in Virtual/Augmented Reality environments to capture data on the user\u2019s perception and to rate the level of appraisal inspired by the specific design solution. In this paper we present the experimental procedures for the Human in the loop simulations in Virtual Reality Environment of the Regional Aircraft solutions provided in the CASTLE Project. First, we introduce the overall procedure plan. Then, we describe the work done for the creation of the Virtual Environment for different scenarios (user standing in the cabin, Galley, Lavatory) and for the subjective evaluation of these cabin items

    Quantum Experimental Data in Psychology and Economics

    Full text link
    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the 'disjunction effect' in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage's Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. For this reason our analysis puts forward a strong argument in favor of the validity of using a quantum formalism for modeling the considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure

    Augmented reality technology selection based on integrated QFD-AHP model

    Get PDF
    In the last decade, Augmented Reality has become increasingly popular. As improved performances are gathered in terms of mature hardware and software tools, we are observing the stemming of a huge number of applications of this technology both in the entertainment and in the industrial domains. On the one hand, such applications are usually claimed to bring benefits in terms of productivity or enhancement of the human\u2019s capability to perform tasks. On the other hand, researchers and developers seem not to adequately consider the different meanings that AR assumes when implemented through visualization devices that can differ significantly in nature and in their capability to provide a mixed real-virtual scenario. In this paper, we describe a user-centred method based on an integrated QFD-AHP approach to select the best visualization display technology with regard to a specific application context. The aim is to establish a repeatable and documented process for the identification of the technology that best suits and mitigates the acceptability risks of the transition from a legacy working environment to an AR based operational environment. The method has been developed in the framework of the RETINA (Resilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision) project involving the end users, in this case, air traffic controllers. Nevertheless, it can be generalised and applied to other contexts of use. Furthermore, in order to be resilient to the fast, technological development in AR, it can be used to update the results as improvements arise in the performance level of the display devices in a specific technology

    Preliminary user centred evaluation of regional aircraft cabin interiors in virtual reality

    Get PDF
    The main aim of the CASTLE (Cabin System Design Towards Passenger Wellbeing) European project is to deliver innovative interiors solutions that maximize the comfort and wellbeing of passengers in the next future. To achieve such objective, an effective HCD (Human Centred Design) approach has been employed to derive a Human Response Model based on a holistic assessment of comfort. The overall methodology has been conceived to provide different tools and methods to collect data on the impact that the design of each cabin item has on the user from the earliest design stages. One of these tools is represented by using 3D virtual mock-ups to capture data on the user\u2019s perception and to rate the level of appreciation inspired by the specific design. In this paper we present the experimental procedures and the results from a preliminary experimental campaign of Human in the loop simulations in Virtual/Augmented Reality of a Regional Aircraft

    Evaluation of augmented reality tools for the provision of tower air traffic control using an ecological interface design

    Get PDF
    One of the major problems faced by the growth of air traffic in the last decade is the limited capacity of the runway especially during low visibility procedures (LVP) due to fog and bad weather. To solve this issue, the project \u201cResilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision\u201d (RETINA) project, a two-years exploratory research project, under SESAR2020 program, proposes to use new Synthetic Vision (SV) and Augmented Reality (AR) technologies for the tower controllers to allow them to conduct safe operations under any Meteorological Conditions while maintaining a high runway throughput, equal to good visibility. In this paper we introduce the Ecological Interface Design (EID) as a methodology to investigate the potential and applicability of SV tools and Virtual/Augmented Reality (V/AR) display techniques for the Air Traffic Control (ATC) service provision by the airport control tower. We explain how the EID framework can be used in RETINA, we experiment the framework on a suitable airport and we provide the EID results comparing normal and LVP conditions with operations using RETINA technologies
    corecore