60 research outputs found

    Inflow-Outflow Model with Conduction and Self-Consistent Feeding for Sgr A*

    Get PDF
    We propose a two-temperature radial inflow-outflow model near Sgr A* with self-consistent feeding and conduction. Stellar winds from individual stars are considered to find the rates of mass injection and energy injection. These source terms help to partially eliminate the boundary conditions on the inflow. Electron thermal conduction is crucial for inhibiting the accretion. Energy diffuses out from several gravitational radii, unbinding more gas at several arcseconds and limiting the accretion rate to <1% of Bondi rate. We successfully fit the X-Ray surface brightness profile found from the extensive Chandra observations and reveal the X-Ray point source in the center. The super-resolution technique allows us to infer the presence and estimate the unabsorbed luminosity L≈4⋅1032ergs−1L\approx4\cdot10^{32}{\rm erg s^{-1}} of the point source. The employed relativistic heat capacity and direct heating of electrons naturally lead to low electron temperature Te≈4⋅1010T_e\approx 4\cdot10^{10} K near the black hole. Within the same model we fit 86 GHz optically thick emission and obtain the order of magnitude agreement of Faraday rotation measure, thus achieving a single accretion model suitable at all radii.Comment: 6 pages, 5 figures, accepted by Ap

    Intra-day Variability of Sagittarius A* at 3 Millimeters

    Full text link
    We report observations and analysis of flux monitoring of Sagittarius A* at 3-mm wavelength using the OVRO millimeter interferometer over a period of eight days (2002 May 23-30). Frequent phase and flux referencing (every 5 minutes) with the nearby calibrator source J1744-312 was employed to control for instrumental and atmospheric effects. Time variations are sought by computing and subtracting, from each visibility in the database, an average visibility obtained from all the data acquired in our monitoring program having similar uv spacings. This removes the confusing effects of baseline-dependent, correlated flux interference caused by the static, thermal emission from the extended source Sgr A West. Few-day variations up to ~20% and intra-day variability of \~20% and in some cases up to ~40% on few-hour time scales emerge from the differenced data on SgrA*. Power spectra of the residuals indicate the presence of hourly variations on all but two of the eight days. Monte Carlo simulation of red-noise light curves indicates that the hourly variations are well described by a red-noise power spectrum with P(f) ~ f^(-1). Of particular interest is a ~2.5 hour variation seen prominently on two consecutive days. An average power spectrum from all eight days of data reveals noteworthy power on this time scale. There is some indication that few-hour variations are more pronounced on days when the average daily flux is highest. We briefly discuss the possibility that these few-hour variations are due to the dynamical modulation of accreting gas around the central supermassive black hole, as well as the implications for the structure of the SgrA* photosphere at 3 mm. Finally, these data have enabled us to produce a high sensitivity 3-mm map of the extended thermal emission surrounding SgrA*.Comment: Accepted for publication in The Astrophysical Journal Letters, 8 pages, 4 figure

    Evidence for A Parsec-scale Jet from The Galactic Center Black Hole: Interaction with Local Gas

    Full text link
    Despite strong physical reasons that they should exist and decades of search, jets from the Galactic Center Black Hole, Sgr A*, have not yet been convincingly detected. Based on high-resolution Very Large Array images and ultra-deep imaging-spectroscopic data produced by the Chandra X-ray Observatory, we report new evidence for the existence of a parsec-scale jet from Sgr A*, by associating a linear feature G359.944-0.052, previously identified in X-ray images of the Galactic Center, with a radio shock front on the Eastern Arm of the Sgr A West HII region. We show that the shock front can be explained in terms of the impact of a jet having a sharp momentum peak along the Galaxy's rotation axis, whereas G359.944-0.052, a quasi-steady feature with a power-law spectrum, can be understood as synchrotron radiation from shock-induced ultrarelativistic electrons cooling in a finite post-shock region downstream along the jet path. Several interesting implications of the jet properties are discussed.Comment: 33 pages, 7 figures; Accepted for publication in The Astrophysical Journa

    The X-ray Ridge Surrounding Sgr A* at the Galactic Center

    Full text link
    We present the first detailed simulation of the interaction between the supernova explosion that produced Sgr A East and the wind-swept inner ~ 2-pc region at the Galactic center. The passage of the supernova ejecta through this medium produces an X-ray ridge ~ 9'' to 15'' to the NE of the supermassive black hole Sagittarius A* (Sgr A*). We show that the morphology and X-ray intensity of this feature match very well with recently obtained Chandra images, and we infer a supernova remnant age of less than 2,000 years. This young age--a factor 3--4 lower than previous estimates--arises from our inclusion of stellar wind effects in the initial (pre-explosion) conditions in the medium. The supernova does not clear out the central ~ 0.2-pc region around Sgr~A* and does not significantly alter the accretion rate onto the central black hole upon passage through the Galactic center.Comment: 10 pages, 3 figures, submitted to ApJ

    Characteristics of Diffuse X-Ray Line Emission within 20 pc of the Galactic Center

    Full text link
    Over the last 3 yrs, the Galactic center (GC) region has been monitored with the Chandra X-Ray Observatory. With 11 Chandra observations through 2002 June, the total effective exposure reaches ~590 ks, providing significant photon statistics on the faint, filamentary, diffuse X-ray emission. The true-color X-ray image and the equivalent width (EW) images for the detected elemental species demonstrate that the diffuse X-ray features have a broad range of spatio-spectral properties. Enhancements of the low-ionization-state, or ``neutral'' Fe line emission (E~6.4 keV) to the northeast of Sgr A* can be interpreted as fluorescence within the dense ISM resulting from irradiation by hard, external X-ray sources. They may also be explained by emission induced by the bombardments by high energy particles on the ISM, such as unresolved supernova (SN) ejecta intruding into dense ISM. The detection of molecular cloud counterparts to the 6.4 keV Fe line features indicates that these Fe line features are associated with dense GC clouds and/or active star-forming regions, which supports the X-ray reflection and/or SN ejecta origins for the Fe line emission. We detect highly ionized S and Si lines which are generally coincident with the neutral Fe line emission and the dense molecular clouds in the northeast of Sgr A*. These hot plasmas are likely produced by massive star-forming activities and/or SNRs. In contrast, we find that highly ionized He-like Fe line emission (E~6.7 keV) is primarily distributed along the plane instead of being concentrated in the northeast of Sgr A*. The implied high temperature and the alignment along the plane are consistent with the magnetic confinement model.Comment: 13 pages (ApJ emulator style) including 4 figures (2 color figs). Accepted by ApJ. For full-quality figures, contact [email protected]

    A Giant Outburst at Millimeter Wavelengths in the Orion Nebula

    Full text link
    BIMA observations of the Orion nebula discovered a giant flare from a young star previously undetected at millimeter wavelengths. The star briefly became the brightest compact object in the nebula at 86 GHz. Its flux density increased by more than a factor of 5 on a timescale of hours, to a peak of 160 mJy. This is one of the most luminous stellar radio flares ever observed. Remarkably, the Chandra X-ray observatory was in the midst of a deep integration of the Orion nebula at the time of the BIMA discovery; the source's X-ray flux increased by a factor of 10 approximately 2 days before the radio detection. Follow-up radio observations with the VLA and BIMA showed that the source decayed on a timescale of days, then flared again several times over the next 70 days, although never as brightly as during the discovery. Circular polarization was detected at 15, 22, and 43 GHz, indicating that the emission mechanism was cyclotron. VLBA observations 9 days after the initial flare yield a brightness temperature Tb > 5 x 10^7 K at 15 GHz. Infrared spectroscopy indicates the source is a K5V star with faint Br gamma emission, suggesting that it is a weak-line T Tauri object. Zeeman splitting measurements in the infrared spectrum find B ~ 2.6 +/- 1.0 kG. The flare is an extreme example of magnetic activity associated with a young stellar object. These data suggest that short observations obtained with ALMA will uncover hundreds of flaring young stellar objects in the Orion region.Comment: 29 pages, 7 figures, accepted for publication in Ap

    X-ray and Radio Variability of M31*, The Andromeda Galaxy Nuclear Supermassive Black Hole

    Get PDF
    We confirm our earlier tentative detection of M31* in X-rays and measure its light-curve and spectrum. Observations in 2004-2005 find M31* rather quiescent in the X-ray and radio. However, X-ray observations in 2006-2007 and radio observations in 2002 show M31* to be highly variable at times. A separate variable X-ray source is found near P1, the brighter of the two optical nuclei. The apparent angular Bondi radius of M31* is the largest of any black hole, and large enough to be well resolved with Chandra. The diffuse emission within this Bondi radius is found to have an X-ray temperature ~0.3 keV and density 0.1 cm-3, indistinguishable from the hot gas in the surrounding regions of the bulge given the statistics allowed by the current observations. The X-ray source at the location of M31* is consistent with a point source and a power law spectrum with energy slope 0.9+/-0.2. Our identification of this X-ray source with M31* is based solely on positional coincidence.Comment: 25 pages, 8 figures, submitted to Ap
    • …
    corecore