641 research outputs found

    How have we measured trial outcomes of asthma attack treatment? a systematic review

    Get PDF
    Background Asthma attacks are a common problem for people with asthma and are responsible for significant healthcare costs. There is interest in a precision medicine approach to treatment. However, the choice of trial outcome measures for asthma attack treatment is hampered by the absence of a consensus on suitability. We carried out a systematic review to understand the characteristics of outcome measures used in randomised controlled trials of asthma attack treatment. Have randomised controlled trials of asthma attack treatment measured outcomes that are useful to patients and healthcare providers? Methods The protocol was registered on PROSPERO (CRD42022311479). We searched for randomised controlled trials comparing treatments for adults with asthma attacks, published in English between 1972 and 2022 on MEDLINE, Embase and Cochrane Library databases. We recorded the outcome measures and study characteristics. Results We identified 208 eligible randomised controlled trials from 35 countries. Trials ranged from 12 to 1109 participants, with a median of 60. The most common settings were the emergency department (n=165) and hospital admission (n=33). Only 128 studies had primary and secondary outcomes defined clearly. In those that did, 73% of primary outcomes measured change in lung function or other physiological parameters over a short period (usually \u3c 24 h). Patient-reported and healthcare utilisation outcomes were the primary outcome in 27%. Conclusions Outcomes in randomised controlled trials of asthma attack treatment focus on short-term changes in lung function and may not capture patient-centred and economically important longer-term measures. More work is needed to investigate patient and other stakeholder preferences on core outcome sets

    Evaluation of data processing pipelines on real-world electronic health records data for the purpose of measuring patient similarity

    Get PDF
    BACKGROUND: The ever-growing size, breadth, and availability of patient data allows for a wide variety of clinical features to serve as inputs for phenotype discovery using cluster analysis. Data of mixed types in particular are not straightforward to combine into a single feature vector, and techniques used to address this can be biased towards certain data types in ways that are not immediately obvious or intended. In this context, the process of constructing clinically meaningful patient representations from complex datasets has not been systematically evaluated. AIMS: Our aim was to a) outline and b) implement an analytical framework to evaluate distinct methods of constructing patient representations from routine electronic health record data for the purpose of measuring patient similarity. We applied the analysis on a patient cohort diagnosed with chronic obstructive pulmonary disease. METHODS: Using data from the CALIBER data resource, we extracted clinically relevant features for a cohort of patients diagnosed with chronic obstructive pulmonary disease. We used four different data processing pipelines to construct lower dimensional patient representations from which we calculated patient similarity scores. We described the resulting representations, ranked the influence of each individual feature on patient similarity and evaluated the effect of different pipelines on clustering outcomes. Experts evaluated the resulting representations by rating the clinical relevance of similar patient suggestions with regard to a reference patient. RESULTS: Each of the four pipelines resulted in similarity scores primarily driven by a unique set of features. It was demonstrated that data transformations according to each pipeline prior to clustering can result in a variation of clustering results of over 40%. The most appropriate pipeline was selected on the basis of feature ranking and clinical expertise. There was moderate agreement between clinicians as measured by Cohen's kappa coefficient. CONCLUSIONS: Data transformation has downstream and unforeseen consequences in cluster analysis. Rather than viewing this process as a black box, we have shown ways to quantitatively and qualitatively evaluate and select the appropriate preprocessing pipeline

    Comparison of the peripheral blood eosinophil count using near-patient testing and standard automated laboratory measurement in healthy, asthmatic and COPD subjects

    Get PDF
    Near-patient testing (NPT) allows clinical decisions to be made in a rapid and convenient manner and is often cost effective. In COPD the peripheral blood eosinophil count has been demonstrated to have utility in providing prognostic information and predicting response to treatment during an acute exacerbation. For this potential to be achieved having a reliable NPT of blood eosinophil count would be extremely useful. Therefore, we investigated the use of the HemoCue® WBC Diff System and evaluated its sensitivity and specificity in healthy, asthmatic and COPD subjects. This method requires a simple skin prick of blood and was compared to standard venepuncture laboratory analysis. The HemoCue® WBC Diff System measured the peripheral blood eosinophil count in healthy, asthma and COPD subjects with very close correlation to the eosinophil count as measured by standard venepuncture. The correlations were unaffected by disease status. This method for the measurement of the peripheral blood eosinophil count has the potential to provide rapid near-patient results and thus influence the speed of management decisions in the treatment of airway diseases

    Eosinophilic inflammation in COPD: from an inflammatory marker to a treatable trait

    Get PDF
    The heterogeneity of chronic obstructive pulmonary disease (COPD) creates many diagnostic, prognostic, treatment and management challenges, as the pathogenesis of COPD is highly complex and the underlying cellular and molecular mechanisms remain poorly understood. A reliable, easy-to-measure, clinically relevant biomarker would be invaluable for improving outcomes for patients. International and national guidance for COPD suggests using blood eosinophil counts as a biomarker to help estimate likely responsiveness to inhaled corticosteroids (ICS) and, potentially, to aid effective management strategies. However, with the mechanism underlying the association between higher eosinophil levels and ICS effect unknown, use of the blood eosinophil count in COPD continues to be widely debated by the respiratory community.Two international meetings involving respiratory medicine specialists, immunologists and primary and secondary care clinicians were held in November 2018 and March 2019, facilitated and funded by GlaxoSmithKline plc. The aims of these meetings were to explore the role of eosinophils in the disease processes of COPD and as prognostic and diagnostic markers, and to identify areas of deficient knowledge that warrant further research. The consensus views of the attendees on key topics, contextualised with current literature, are summarised in this review article, with the aim of aiding ongoing research into the disease processes of COPD and the development of biomarkers to aid clinical management.Under certain conditions, eosinophils can be recruited to the lung, and increasing evidence supports a role for eosinophilic inflammation in some patients with COPD. Infiltration of eosinophils across the bronchial vascular epithelium into the airways is promoted by the actions of immunoregulatory cells, cytokines and chemokines, where eosinophil-mediated inflammation is driven by the release of proinflammatory mediators.Multiple studies and two meta-analyses suggest peripheral blood eosinophils may correlate positively with an increased likelihood of exacerbation reduction benefits of ICS in COPD. The studies, however, vary in design and duration and by which eosinophil levels are viewed as predictive of an ICS response. Generally, the response was seen when eosinophil levels were 100-300 cells/µL (or higher), levels which are traditionally viewed within the normal range. Some success with interleukin-5-targeted therapy suggests that the eosinophilic phenotype may be a treatable trait.The use of biomarkers could help to stratify treatment for COPD-the goal of which is to improve patient outcomes. Some evidence supports eosinophils as a potential biomarker of a treatable trait in COPD, though it is still lacking and research is ongoing. A unified consensus and a practical, accessible and affordable method of utilising any biomarker for COPD was thought to be of most importance. Challenges around its utilisation may include presenting a clear and pragmatic rationale for biomarker-driven therapy, guidance on ICS withdrawal between primary and secondary care and a lack of financial incentives supporting broad application in clinical practice. Future treatments should, perhaps, be more targeted rather than assuming the primary disease label (COPD or asthma) will define treatment response

    Recovery of Breakthrough Asthma Attacks Treated With Oral Steroids while on monoclonal antibody therapy: protocol for a prospective observational study (BOOST)

    Get PDF
    Background: Asthma attacks are a common and important problem. Someone experiences an asthma attack in the United Kingdom every 10 seconds. Asthma attacks cause coughing, wheezing, breathlessness, and chest tightness and are highly stressful for patients. They result in reduced quality of life, with days lost from work or school. Asthma attacks are treated with oral corticosteroids (OCSs), but these have many short- and long-term side effects. Asthma monoclonal antibodies (mAbs) have revolutionized the treatment of severe asthma by reducing asthma attacks and OCS burden by over 50%, but some people still experience attacks while on mAbs. The MEX study showed that residual asthma attacks are broadly eosinophilic (high fractional exhaled nitric oxide [FeNO]) or noneosinophilic (low FeNO), but it did not measure response to OCS treatment. There is an evidence gap in understanding the clinical and inflammatory responses that occur when using OCSs to treat residual asthma attacks in patients taking asthma mAbs. Objective: The primary objective is to compare the clinical recovery between high-FeNO and low-FeNO attacks after acute treatment with oral prednisolone among people established on long-term asthma mAb treatment. The exploratory objective is to compare the inflammatory response to acute treatment with oral prednisolone between high-FeNO and low-FeNO attacks. Methods: BOOST (Breakthrough Asthma Attacks Treated With Oral Steroids) is a single-center, prospective observational study of 60 adults established on long-term asthma mAb treatment who receive acute treatment with oral prednisolone (usual care) for an asthma attack. The primary outcome will be the proportion of treatment failure (the need to start oral prednisolone or antibiotics or an unscheduled health care visit for asthma, following an attack) at day 28. The secondary outcomes will be the change in forced expiratory volume in 1 second and the change in visual analogue scale symptom score between the stable state, attack, day 7, and day 28 visits. The exploratory outcomes include the changes in sputum, nasal, and blood inflammometry between the stable state, attack, day 7, and day 28 visits. Results: The last asthma attack visit is anticipated to occur in December 2023. Data analysis and publication will take place in 2024. Conclusions: We will test the hypothesis that there is a difference in the rate of recovery of clinical and inflammatory measures between high-FeNO and low-FeNO asthma attacks that occur in patients on mAb therapy. The study data will help power a future randomized placebo-controlled trial of prednisolone treatment for nonsevere attacks in patients treated with asthma mAbs and will provide important information on whether corticosteroid treatment should be FeNO-directed. International Registered Report Identifier (IRRID): DERR1-10.2196/4674

    Creation, Contingency, and Early Modern Science: The Impact of Voluntarist Theology on Seventeenth-Century Natural Philosophy

    Get PDF
    Could God have made it true that 2 + 2 = 5? Was he bound to make the best of all possible worlds? Is he able at this moment to alter the course of nature, either in whole or in part? Questions like these are often associated with medieval theology, not with early modern science. But science is done by people, and people have not always practiced the rigorous separation of science and theology that has come to characterize the modern world. Although many 17th century scientists sought validity for their work apart from revelation, divorcing science from religion was something they never intended. Indeed most natural philosophers of the scientific revolution assumed without question that the world and the human mind had been created by God. This was no small admission, for it meant that both the manner in which and the degree to which the world could be understood depended upon how God had acted in creating it and how he continued to act in sustaining it. Fifty years ago the late British philosopher M.B. Foster identified two different theologies of creation which differ profoundly in their implications for natural science. Rationalist theology, which assigns to God the activity of pure reason, involves both a rationalist X philosophy of nature and a rationalist theory of knowledge of nature. Voluntarist theology, which attributes to God an activity of will not wholly determined by reason, implies that the products of his creative activity are contingent and can be known only empirically. By a careful analysis of four natural philosophies of the early modern period--those of Galileo, Descartes, Boyle, and Newton--! intend to show that there was indeed a connection between theological voluntarism and empirical science in the 17th century

    Body Mass and Fat Mass in Refractory Asthma: An Observational 1 Year Follow-Up Study

    Get PDF
    Background. Asthma and obesity are common; however the impact of obesity upon asthma remains uncertain. Objectives. To assess relationships between obesity and fat mass with airway inflammation, lung function, and disease control in patients with refractory asthma. Methods. 151 refractory asthma patients were characterised for measures of airway inflammation, lung function, Juniper asthma control questionnaire (JACQ), body mass index (BMI), and fat mass index (FMI) derived from dual energy X-ray absorptiometry. Patients were reassessed over 12 months. Results. 74% of patients had an elevated BMI. BMI and FMI correlated (r = 0.9, P < .001). FMI and JACQ correlated in men (r = 0.3, P = .01). After 12 months 23% lost weight. Weight change over 12 months correlated with FEV1 change (r = −0.3, P = .03), but not with change in JACQ or exacerbations. Conclusion. Increased fat mass is common in refractory asthma and is associated with asthma symptom control in men. Loss of weight is associated with improvement in lung function in refractory asthma

    Recruiting patients to a digital self-management study whilst in hospital for a chronic obstructive pulmonary disease exacerbation: A feasibility analysis

    Get PDF
    Background Patients with chronic obstructive pulmonary disease (COPD) are often hospitalised with acute exacerbations (AECOPD) and many patients get readmitted. Intervening with hospitalised patients may be optimal timing to provide support. Our previous work demonstrated use of a digital monitoring and self-management support tool in the community. However, we wanted to explore the feasibility of recruiting patients whilst hospitalised for an AECOPD, and to identify the rate of dropout attrition around admission for AECOPD. Methods Patients were recruited to the EDGE2 study between May 2019 and March 2020. Patients were identified by the clinical teams and patients were recruited by members of the clinical research team. Participants were aged 40 years or older, had a diagnosis of COPD and were attending or admitted to hospital for an AECOPD. Participants were given a tablet computer, Bluetooth-linked pulse oximeter and wrist-worn physical activity monitor to use until 6 months post-discharge. Use of the system aimed to support COPD self-management by enabling self-monitoring of vital signs, COPD symptoms, mood and physical activity, and access to multi-media educational resources. Results 281 patients were identified and 126 approached. The main referral source was the specialist respiratory nursing and physiotherapist team (49.8% of patients identified). Twenty-six (37.1%) patients were recruited. As of 21 April 2020, 14 (53.8%) participants withdrew and 11 (of 14; 78.6%) participants withdrew within four weeks of discharge. The remaining participants withdrew between one and three months follow-up (1 of 14; 7.1%) and between three and six months follow-up (2 of 14; 14.3%). Conclusion A large number of patients were screened to recruit a relatively small sample and a high rate of dropout was observed. It does not appear feasible to recruit patients with COPD to digital interventional studies from the hospital setting when they have the burden of coping with acute illness

    Early Th2 inflammation in the upper respiratory mucosa as a predictor of severe COVID-19 and modulation by early treatment with inhaled corticosteroids: A mechanistic analysis

    Get PDF
    Background: Community-based clinical trials of the inhaled corticosteroid budesonide in early COVID-19 have shown improved patient outcomes. We aimed to understand the inflammatory mechanism of budesonide in the treatment of early COVID-19. Methods: The STOIC trial was a randomised, open label, parallel group, phase 2 clinical intervention trial where patients were randomly assigned (1:1) to receive usual care (as needed antipyretics were only available treatment) or inhaled budesonide at a dose of 800 μg twice a day plus usual care. For this experimental analysis, we investigated the nasal mucosal inflammatory response in patients recruited to the STOIC trial and in a cohort of SARS-CoV-2-negative healthy controls, recruited from a long-term observational data collection study at the University of Oxford. In patients with SARS-CoV-2 who entered the STOIC study, nasal epithelial lining fluid was sampled at day of randomisation (day 0) and at day 14 following randomisation, blood samples were also collected at day 28 after randomisation. Nasal epithelial lining fluid and blood samples were collected from the SARS-CoV-2 negative control cohort. Inflammatory mediators in the nasal epithelial lining fluid and blood were assessed for a range of viral response proteins, and innate and adaptive response markers using Meso Scale Discovery enzyme linked immunoassay panels. These samples were used to investigate the evolution of inflammation in the early COVID-19 disease course and assess the effect of budesonide on inflammation. Findings: 146 participants were recruited in the STOIC trial (n=73 in the usual care group; n=73 in the budesonide group). 140 nasal mucosal samples were available at day 0 (randomisation) and 122 samples at day 14. At day 28, whole blood was collected from 123 participants (62 in the budesonide group and 61 in the usual care group). 20 blood or nasal samples were collected from healthy controls. In early COVID-19 disease, there was an enhanced inflammatory airway response with the induction of an anti-viral and T-helper 1 and 2 (Th1/2) inflammatory response compared with healthy individuals. Individuals with COVID-19 who clinically deteriorated (ie, who met the primary outcome) showed an early blunted respiratory interferon response and pronounced and persistent Th2 inflammation, mediated by CC chemokine ligand (CCL)-24, compared with those with COVID-19 who did not clinically deteriorate. Over time, the natural course of COVID-19 showed persistently high respiratory interferon concentrations and elevated concentrations of the eosinophil chemokine, CCL-11, despite clinical symptom improvement. There was persistent systemic inflammation after 28 days following COVID-19, including elevated concentrations of interleukin (IL)-6, tumour necrosis factor-α, and CCL-11. Budesonide treatment modulated inflammation in the nose and blood and was shown to decrease IL-33 and increase CCL17. The STOIC trial was registered with ClinicalTrials.gov, NCT04416399. Interpretation: An initial blunted interferon response and heightened T-helper 2 inflammatory response in the respiratory tract following SARS-CoV-2 infection could be a biomarker for predicting the development of severe COVID-19 disease. The clinical benefit of inhaled budesonide in early COVID-19 is likely to be as a consequence of its inflammatory modulatory effect, suggesting efficacy by reducing epithelial damage and an improved T-cell response
    corecore