53 research outputs found

    Complete Sequences of Organelle Genomes from the Medicinal Plant Rhazya Stricta (Apocynaceae) and Contrasting Patterns of Mitochondrial Genome Evolution Across Asterids

    Get PDF
    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. Results: The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Conclusions: Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution among angiosperms. The genomic data have enabled a rigorous examination of the gene transfer events. Rhazya is unique among the eight sequenced asterids in the types of events that have shaped the evolution of its mitochondrial genome. Furthermore, the organelle genomes of R. stricta provide valuable genomic resources for utilizing this important medicinal plant in biotechnology applications.King Abdulaziz UniversityIntegrative Biolog

    High-quality draft genome sequence of Rhizobium mesoamericanum strain STM6155, a Mimosa pudica microsymbiont from New Caledonia.

    Get PDF
    Rhizobium mesoamericanum STM6155 (INSCD?=?ATYY01000000) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as an effective nitrogen fixing microsymbiont of the legume Mimosa pudica L.. STM6155 was isolated in 2009 from a nodule of the trap host M. pudica grown in nickel-rich soil collected near Mont Dore, New Caledonia. R. mesoamericanum STM6155 was selected as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) genome sequencing project. Here we describe the symbiotic properties of R. mesoamericanum STM6155, together with its genome sequence information and annotation. The 6,927,906 bp high-quality draft genome is arranged into 147 scaffolds of 152 contigs containing 6855 protein-coding genes and 71 RNA-only encoding genes. Strain STM6155 forms an ANI clique (ID 2435) with the sequenced R. mesoamericanum strain STM3625, and the nodulation genes are highly conserved in these strains and the type strain of Rhizobium grahamii CCGE501(T). Within the STM6155 genome, we have identified a chr chromate efflux gene cluster of six genes arranged into two putative operons and we postulate that this cluster is important for the survival of STM6155 in ultramafic soils containing high concentrations of chromate

    GC-MS Analysis of Bioactive Compounds Extracted from Plant <i>Rhazya stricta</i> Using Various Solvents

    No full text
    Worldwide, human beings have traditionally employed many folkloric herbal resources as complementary and alternative remedies, and these remedies have played a pivotal role in modern medicines for many decades, as scientists have used them to develop drugs. We studied the effects of employing solvents with varying polarity on the yields of phytochemical components extracted from the plant Rhazya stricta. We used chloroform–methanol (1:1), methanol, ethanol, diethyl ether, and ethyl acetate as extraction solvents. The results showed that the efficiencies of the solvents at extracting phytochemical compounds were in this order: chloroform–methanol R. stricta extract. Furthermore, compared with the other solvents, the chloroform–methanol extraction led to the highest yield (47.55%) and to more phytochemical substances being extracted. The aim of this study is to investigate the phytochemical compounds extracted from R. stricta with different solvents that have different polarities

    Molecular and cytogenetic assessment of Dipterygium glaucum genotoxicity

    No full text
    ABSTRACT The aim of the present study is to assess the genotoxicity of Dipterygium glaucum grows widely in Saudi Arabia desert to produce safety herbal products. This work is considered the first and pioneer report so far due to the lack and poor evaluated reports of the plant species for their mutagensity, genotoxicity and cytogenetics effects. Cytogenetic effects of D. glaucum on mitotic in roots of Vicia faba showed reduction in mitotic activity using three extracts; water, ethanol and ethyl acetate. Chromosomal abnormalities were recorded that included stickiness of chromosomes, chromatin bridge, fragments, lagging chromosome and micronuclei. Protein bands and RAPD analyses of V. faba treated with three D. glaucum extracts revealed some newly induced proteins and DNA fragments and other disappeared. Chemical constitution of the plant species should be identified with their biological activities against human and animal cells like HeLa cancer cell line. We are recommending using additional genotoxicity tests and other toxicity tests on animal culture with different concentrations and also utilizing several drought and heat tolerant genes of the plant species in gene cloning to develop and improve other economical crop plants instead of using the species as oral herbal remed

    Antibacterial activities of Rhazya stricta leaf extracts against multidrug-resistant human pathogens

    No full text
    Bacterial resistance to antibiotics, first a major concern in the 1960s, has re-emerged worldwide over the last 20 years. The World Health Organization (WHO) and other health organizations have, therefore, declared ‘war’ against human microbial pathogens, particularly hospital-acquired infections, and have made drug discovery a top priority for these diseases. Because these bacteria are refractory to conventional chemotherapy, medicinal and herbal plants used in various countries should be assessed for their therapeutic potential; these valuable bio-resources are a reservoir of complex bioactive molecules. Earlier studies from our laboratory on Rhazya stricta, a native herbal shrub of Asia, have shown that this plant has a number of therapeutic properties. In this study, we evaluated the antimicrobial activities of various concentrations of five solvent extracts (aqueous alkaloid, aqueous non-alkaloid, organic alkaloid, organic non-alkaloid and whole aqueous extracts) derived from R. stricta leaves against several multidrug-resistant, human-pathogenic bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase-positive Escherichia coli. In vitro, molecular and electron microscopy analyses conclusively demonstrated the antimicrobial effects of these extracts against a panel of Gram-negative and Gram-positive bacteria. The organic alkaloid extract was the most effective against E. coli and MRSA, resulting in cell membrane disruption visible with transmission electron microscopy. In the near future, we intend to further focus and delineate the molecular mechanism-of-action for specific alkaloids of R. stricta, particularly against MRSA

    Assaying for antiviral activity of the folkloric medicinal desert plant Rhazya stricta on coronavirus SARS-CoV-2

    No full text
    AbstractThe emergence of superbugs and resistant pathogens poses a challenge in scientific and medical research as they threaten public health worldwide. Many herbal natural products currently used in therapies have been suggested to exert antimicrobial, antiviral and even virucidal activities against a vast majority of impervious pathogens. Rhazya stricta, a folk medicinal desert plant from Saudi Arabia was recently revealed to exhibit bactericidal activity against multidrug-resistant (MDR) microorganisms. The pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a threat to public health worldwide. Hence, we examined the antiviral activity of R. stricta against the virus. The R. stricta water extract was prepared at the traditional dose. The antagonistic effects of this extract against pathogens have been proven in previous studies, and those against SARS-CoV-2 were shown in the present study. Therefore, we explored the effects of the plant extracts and fractions against the virus for future drug development. All plant extracts showed antiviral effects against SARS-CoV-2 in the Vero E6 cell lines. Non-alkaloids showed the strongest effect against the virus, followed by weak base alkaloids and finally strong base alkaloids. A cytotoxicity assay was performed to explore the safest dose with the strongest antiviral effects. The non-alkaloid extract derived from R. stricta leaves is a promising antiviral candidate for the development of potential drugs with appropriate activity against COVID-19 and other life-threatening diseases
    • …
    corecore