417 research outputs found

    Physiologic Specialization of \u3ci\u3ePuccinia recondita\u3c/i\u3e f. sp. \u3ci\u3etritici\u3c/i\u3e in Nebraska During 1995 and 1996

    Get PDF
    Field samples of Puccinia recondita f. sp. tritici, collected from four wheat-growing regions in Nebraska in 1995 and from three in 1996, were characterized for virulence. Twenty virulence phenotypes were identified in 1995 and 18 in 1996. Virulence phenotypes MBR-10,18 (virulent on Lr genes, 1, 3, 3ka, 10, 11, 18, and 30) and MDR-10,18 (virulent on Lr genes 1, 3, 3ka, 10, 11, 18, 24, and 30) were the most prevalent, with each phenotype comprising 21.6% of the isolates characterized in 1995. Of the 1995 isolates, 24% were virulent on 10 or more host genes. No virulence to Lr16 and Lr17 was detected. In 1996, virulence phenotype MBR-10,18 was the most prevalent and comprised 20.5% of the isolates characterized. Of the 1996 isolates, 33% were virulent on 10 or more host genes. All isolates in both years were virulent on Lr1, Lr3, and Lr10. New virulence phenotypes were detected in 1996 that were not detected in 1995. In 1996, virulence was more frequent on Lr2a, Lr16, and Lr17 and less frequent on Lr3ka, Lr18, Lr24, Lr26, and Lr30. The number of isolates virulent on Lr24 and Lr26 has decreased from 83 and 53%, respectively, in 1992, to 34 and 1%, respectively, in 1996

    Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand

    Get PDF
    We have constructed an artificial ligand for the hepatocyte-specific asialoglycoprotein receptor for the purpose of generating a synthetic delivery system for DNA. This ligand has a tetra-antennary structure, containing four terminal galactose residues on a branched carrier peptide. The carbohydrate residues of this glycopeptide were introduced by reductive coupling of lactose to the alpha- and epsilon-amino groups of the two N-terminal lysines on the carrier peptide. The C-terminus of the peptide, containing a cysteine separated from the branched N-terminus by a 10 amino acid spacer sequence, was used for conjugation to 3-(2-pyridyldithio)propionate-modified polylysine via disulfide bond formation. Complexes containing plasmid DNA bound to these galactose-polylysine conjugates have been used for asialoglycoprotein receptor-mediated transfer of a luciferase gene into human (HepG2) and murine (BNL CL.2) hepatocyte cell lines. Gene transfer was strongly promoted when amphipathic peptides with pH-controlled membrane-disruption activity, derived from the N-terminal sequence of influenza virus hemagglutinin HA-2, were also present in these DNA complexes. Thus, we have essentially borrowed the small functional domains of two large proteins, asialoglycoprotein and hemagglutinin, and assembled them into a supramolecular complex to generate an efficient gene-transfer system

    BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome

    Get PDF
    BioDrugScreen is a resource for ranking molecules docked against a large number of targets in the human proteome. Nearly 1600 molecules from the freely available NCI diversity set were docked onto 1926 cavities identified on 1589 human targets resulting in >3 million receptor–ligand complexes requiring >200 000 cpu-hours on the TeraGrid. The targets in BioDrugScreen originated from Human Cancer Protein Interaction Network, which we have updated, as well as the Human Druggable Proteome, which we have created for the purpose of this effort. This makes the BioDrugScreen resource highly valuable in drug discovery. The receptor–ligand complexes within the database can be ranked using standard and well-established scoring functions like AutoDock, DockScore, ChemScore, X-Score, GoldScore, DFIRE and PMF. In addition, we have scored the complexes with more intensive GBSA and PBSA approaches requiring an additional 120 000 cpu-hours on the TeraGrid. We constructed a simple interface to enable users to view top-ranking molecules and access purchasing and other information for further experimental exploration

    Registration of ‘Hallam’ Wheat

    Get PDF
    ‘Hallam’ (Reg. no. CV-983, PI 638790) is a hard red winter wheat (Triticum aestivum L.) cultivar developed cooperatively by the Nebraska Agricultural Experiment Station and the USDA-ARS and released in 2005 by the developing institutions. Hallam was released primarily for its superior adaptation to rainfed wheat production systems in eastern Nebraska. The name Hallam was chosen to honor Hallam, NE, a town and its people rebuilding after a tornado. Hallam was selected from the cross ‘Brule’ (Schmidt et al., 1983)/‘Bennett’ (Schmidt et al., 1981)//‘Niobrara’ (Baenziger et al., 1996) that was made in 1992. The F1 generation was grown in the greenhouse and the F2 to F3 generations were advanced using the bulk breeding method in the field at Mead, NE. In 1995, single F3:4 rows were planted for selection. Hallam was selected in the F4 and there was no further selection thereafter. Hallam was evaluated as NE98471 in Nebraska yield nurseries starting in 1999, in the Northern Regional Performance Nursery in 2001 and 2002, and in Nebraska cultivar performance trials from 2002 to 2004. In the Nebraska cultivar performance trials, it was narrowly adapted and performs best in eastern Nebraska. The average Nebraska rainfed yield of Hallam of 4110 kg ha-1 (41 environments from 2002 to 2004) was greater than the yields of ‘Wahoo’ (4030 kg ha-1; Baenziger et al., 2002), ‘Alliance’ (3880 kg ha-1; Baenziger et al., 1995), and ‘Harry’ (4000 kg ha-1; Baenziger et al., 2004b), but was lower than ‘Millennium’ (4180 kg ha-1; Baenziger et al., 2001) and ‘Wesley’ (4210 kg ha-1; Peterson et al., 2001). In its primary area of adaptation (eastern Nebraska), Hallam has yielded 4540 kg ha-1 (five environments), which was greater than Wesley (4150 kg ha-1), Millennium (4250 kg ha-1), Wahoo (3940 kg ha-1), and Alliance (3900 kg ha21). In the Northern Regional Performance Nursery, Hallam ranked 14th of 30 in 2001 (12 environments) and fourth of 25 entries in 2002 (13 environments) and averaged 100 kg ha-1 more grain yield than ‘Nekota’ (Haley et al., 1996). Hallam is not recommended for use in irrigated production systems where other wheat cultivars with superior performance, especially with better straw strength (described below), would be recommended. Other measurements of performance from comparison trials show that Hallam is moderately early in maturity (142 d after January 1, five environments), about 2.5 d and 1.2 d earlier flowering than Millennium and Wesley, respectively. Hallam is a semidwarf wheat cultivar. Hallam has a medium short coleoptile (46 mm), as expected for a semidwarf wheat cultivar, and is shorter than ‘Goodstreak’ (61 mm; Baenziger et al., 2004a) and slightly longer than semidwarf wheat cultivars such as Harry (36 mm). The mature plant height of Hallam (86 cm) is 3 cm shorter than Millennium and 6 cm taller than Wesley (41 environments). Hallam has moderate straw strength (45% lodged), similar to Wahoo (46% lodged), but worse than Wesley (34% lodged) in those environments (3) where severe lodging was found. The winter hardiness of Hallamis good to very good, similar to ‘Abilene’ (PI 511307) and comparable to other winter wheat cultivars adapted and commonly grown in Nebraska

    Registration of ‘Hallam’ Wheat

    Get PDF
    ‘Hallam’ (Reg. no. CV-983, PI 638790) is a hard red winter wheat (Triticum aestivum L.) cultivar developed cooperatively by the Nebraska Agricultural Experiment Station and the USDA-ARS and released in 2005 by the developing institutions. Hallam was released primarily for its superior adaptation to rainfed wheat production systems in eastern Nebraska. The name Hallam was chosen to honor Hallam, NE, a town and its people rebuilding after a tornado. Hallam was selected from the cross ‘Brule’ (Schmidt et al., 1983)/‘Bennett’ (Schmidt et al., 1981)//‘Niobrara’ (Baenziger et al., 1996) that was made in 1992. The F1 generation was grown in the greenhouse and the F2 to F3 generations were advanced using the bulk breeding method in the field at Mead, NE. In 1995, single F3:4 rows were planted for selection. Hallam was selected in the F4 and there was no further selection thereafter. Hallam was evaluated as NE98471 in Nebraska yield nurseries starting in 1999, in the Northern Regional Performance Nursery in 2001 and 2002, and in Nebraska cultivar performance trials from 2002 to 2004. In the Nebraska cultivar performance trials, it was narrowly adapted and performs best in eastern Nebraska. The average Nebraska rainfed yield of Hallam of 4110 kg ha-1 (41 environments from 2002 to 2004) was greater than the yields of ‘Wahoo’ (4030 kg ha-1; Baenziger et al., 2002), ‘Alliance’ (3880 kg ha-1; Baenziger et al., 1995), and ‘Harry’ (4000 kg ha-1; Baenziger et al., 2004b), but was lower than ‘Millennium’ (4180 kg ha-1; Baenziger et al., 2001) and ‘Wesley’ (4210 kg ha-1; Peterson et al., 2001). In its primary area of adaptation (eastern Nebraska), Hallam has yielded 4540 kg ha-1 (five environments), which was greater than Wesley (4150 kg ha-1), Millennium (4250 kg ha-1), Wahoo (3940 kg ha-1), and Alliance (3900 kg ha21). In the Northern Regional Performance Nursery, Hallam ranked 14th of 30 in 2001 (12 environments) and fourth of 25 entries in 2002 (13 environments) and averaged 100 kg ha-1 more grain yield than ‘Nekota’ (Haley et al., 1996). Hallam is not recommended for use in irrigated production systems where other wheat cultivars with superior performance, especially with better straw strength (described below), would be recommended. Other measurements of performance from comparison trials show that Hallam is moderately early in maturity (142 d after January 1, five environments), about 2.5 d and 1.2 d earlier flowering than Millennium and Wesley, respectively. Hallam is a semidwarf wheat cultivar. Hallam has a medium short coleoptile (46 mm), as expected for a semidwarf wheat cultivar, and is shorter than ‘Goodstreak’ (61 mm; Baenziger et al., 2004a) and slightly longer than semidwarf wheat cultivars such as Harry (36 mm). The mature plant height of Hallam (86 cm) is 3 cm shorter than Millennium and 6 cm taller than Wesley (41 environments). Hallam has moderate straw strength (45% lodged), similar to Wahoo (46% lodged), but worse than Wesley (34% lodged) in those environments (3) where severe lodging was found. The winter hardiness of Hallamis good to very good, similar to ‘Abilene’ (PI 511307) and comparable to other winter wheat cultivars adapted and commonly grown in Nebraska

    Administration of Steroids in Pediatric Cardiac Surgery: Impact on Clinical Outcome and Systemic Inflammatory Response

    Full text link
    Cardiopulmonary bypass (CPB) is associated with a systemic inflammatory response. Pre-bypass steroid administration may modulate the inflammatory response, resulting in improved postoperative recovery. We performed a prospective study in the departments of cardiovascular surgery and pediatric intensive care medicine of two university hospitals that included 50 infants who underwent heart surgery. Patients received either prednisolone (30 mg/kg) added to the priming solution of the cardiopulmonary bypass circuit (steroid group) or no steroids (nonsteroid group). Clinical outcome parameters include therapy with inotropic drugs, oxygenation, blood lactate, glucose, and creatinine, and laboratory parameters of inflammation include leukocytes, C-reactive protein, and interleukin-8. Postoperative recovery (e.g., the number, dosage, and duration of inotropic drugs as well as oxygenation) was similar in patients treated with or without steroids when corrected for the type of cardiac surgery performed. After CPB, there was an inflammatory reaction, especially in patients with a long CPB time. Postoperative plasma levels of interleukin-8 were correlated with the duration of CPB time (r = 0.62, p < 0.001). Administration of steroids had no significant impact on the laboratory parameters of inflammation. Administration of prednisolone into the priming solution of the CPB circuit had no measurable influence on postoperative recovery and did not suppress the inflammatory respons

    Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals.

    Get PDF
    BackgroundThe SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals.Methodology/principal findingsEndpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions.ConclusionGiven the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans

    Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: a role for thrombospondin-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents. It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. We examined the effect of castration on BC growth in UPII-SV40T transgenic mice, which express SV40 T antigen specifically in urothelium and reliably develop BC. Furthermore, because BC growth in UPII-SV40T mice is exophytic, we speculated BC growth was dependent on angiogenesis and angiogenesis was, in turn, androgen responsive.</p> <p>Methods</p> <p>Flat panel detector-based cone beam computed tomography (FPDCT) was used to longitudinally measure exophytic BC growth in UPII-SV40T male mice sham-operated, castrated, or castrated and supplemented with dihydrotestosterone (DHT). Human normal bladder and BC biopsies and mouse bladder were examined quantitatively for thrombospondin-1 (TSP1) protein expression.</p> <p>Results</p> <p>Mice castrated at 24 weeks of age had decreased BC volumes at 32 weeks compared to intact mice (p = 0.0071) and castrated mice administered DHT (p = 0.0233; one-way ANOVA, JMP 6.0.3, SAS Institute, Inc.). Bladder cancer cell lines responded to DHT treatment with increased proliferation, regardless of androgen receptor expression levels. TSP1, an anti-angiogenic factor whose expression is inhibited by androgens, had decreased expression in bladders of UPII-SV40T mice compared to wild-type. Castration increased TSP1 levels in UPII-SV40T mice compared to intact mice. TSP1 protein expression was higher in 8 of 10 human bladder biopsies of normal versus malignant tissue from the same patients.</p> <p>Conclusion</p> <p>FPDCT allows longitudinal monitoring of exophytic tumor growth in the UPII-SV40T model of BC that bypasses need for chemical carcinogens, which confound analysis of androgen effects. Androgens increase tumor cell growth <it>in vitro </it>and <it>in vivo </it>and decrease TSP1 expression, possibly explaining the therapeutic effect of castration. This effect may, in part, explain gender differences in BC incidence and implies anti-androgenic therapies may be effective in preventing and treating BC.</p
    corecore