964 research outputs found

    Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2) kinase activity is increased in several pathogenic mutations, including the most common mutation, G2019S, and is known to play a role in Parkinson’s disease (PD) pathobiology. This has stimulated the development of potent, selective LRRK2 kinase inhibitors as one of the most prevailing disease-modifying therapeutic PD strategies. Although several lines of evidence support beneficial effects of LRRK2 kinase inhibitors, many questions need to be answered before clinical applications can be envisaged. Using six different LRRK2 kinase inhibitors, we show that LRRK2 kinase inhibition induces LRRK2 dephosphorylation and can reduce LRRK2 protein levels of overexpressed wild type and G2019S, but not A2016T or K1906M, LRRK2 as well as endogenous LRRK2 in mouse brain, lung and kidney. The inhibitor-induced reduction in LRRK2 levels could be reversed by proteasomal inhibition, but not by lysosomal inhibition, while mRNA levels remained unaffected. In addition, using LRRK2 S910A and S935A phosphorylation mutants, we show that dephosphorylation of these sites is not required for LRRK2 degradation. Increasing our insight in the molecular and cellular consequences of LRRK2 kinase inhibition will be crucial in the further development of LRRK2-based PD therapies

    Spontaneous midgestation abortion associated with Bacteroides fragilis: a case report.

    Get PDF
    A midtrimester pregnancy loss, due to B. fragilis is described. We hypothesize that in early pregnancy anaerobic bacterial vaginosis has the greatest pathogenicity, while an intermediate (mixed) flora is most dangerous in midtrimester miscarriages, and that aerobic vaginitis is more dangerous than anaerobes towards the second half of the pregnancy. Unfortunately, no screen and treat policy has yet been proven to be sufficiently powerful to prevent the vast majority of infection-related prematurity. © 2005 Taylor & Francis.status: publishe

    Molecular networks regulating cell division during Arabidopsis leaf growth

    Get PDF
    Leaves are the primary organs for photosynthesis and as such have a pivotal role for plant growth and development. Leaf development is a multi-factorial and dynamic process involving many genes that regulate size, shape, and differentiation. The processes that mainly drive leaf development are cell proliferation and cell expansion, and numerous genes have been identified that, when ectopically expressed or down-regulated, increase cell number and/or cell size during leaf growth. Many of the genes regulating cell proliferation are functionally interconnected and can be grouped in regulatory modules. Here, we review our current understanding of six important gene regulatory modules affecting cell proliferation during Arabidopsis leaf growth: DA1-EOD1, GRF-GIF, SWI/SNF, GA-DELLA, KLU, and PEAPOD. Furthermore, we discuss how post-mitotic cell expansion and these six modules regulating cell proliferation make up final leaf size
    corecore