214 research outputs found

    Variability study of Si nanowire FETs with different junction gradients

    Get PDF
    Random dopant fluctuation effects of gate-all-around Si nanowire field-effect transistors (FETs) are investigated in terms of different diameters and junction gradients. The nanowire FETs with smaller diameters or shorter junction gradients increase relative variations of the drain currents and the mismatch of the drain currents between source-drain and drain-source bias change in the saturation regime. Smaller diameters decreased current drivability critically compared to standard deviations of the drain currents, thus inducing greater relative variations of the drain currents. Shorter junction gradients form high potential barriers in the source-side lightly-doped extension regions at on-state, which determines the magnitude of the drain currents and fluctuates the drain currents greatly under thermionic-emission mechanism. On the other hand, longer junction gradients affect lateral field to fluctuate the drain currents greatly. These physical phenomena coincide with correlations of the variations between drain currents and electrical parameters such as threshold voltages and parasitic resistances. The nanowire FETs with relatively-larger diameters and longer junction gradients without degrading short channel characteristics are suggested to minimize the relative variations and the mismatch of the drain currents. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).1163Ysciescopu

    High efficiency silicon solar cell based on asymmetric nanowire

    Get PDF
    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/ cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.111918Ysciescopu

    Statistical variability study of random dopant fluctuation on gate-all-around inversion-mode silicon nanowire field-effect transistors

    Get PDF
    Random dopant fluctuation effects of gate-all-around inversion-mode silicon nanowire field-effect transistors (FETs) with different diameters and extension lengths are investigated. The nanowire FETs with smaller diameter and longer extension length reduce average values and variations of subthreshold swing and drain-induced barrier lowering, thus improving short channel immunity. Relative variations of the drain currents increase as the diameter decreases because of decreased current drivability from narrower channel cross-sections. Absolute variations of the drain currents decrease critically as the extension length increases due to decreasing the number of arsenic dopants penetrating into the channel region. To understand variability origins of the drain currents, variations of source/drain series resistance and low-field mobility are investigated. All these two parameters affect the variations of the drain currents concurrently. The nanowire FETs having extension lengths sufficient to prevent dopant penetration into the channel regions and maintaining relatively large cross-sections are suggested to achieve suitable short channel immunity and small variations of the drain currents. (C) 2015 AIP Publishing LLC.open111415sciescopu

    Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector

    Get PDF
    The electronic and photoconductive characteristics of CdTe nanowire-based field effect transistors were studied systematically. The electrical characterization of a single CdTe nanowire FET verifies p-type behavior. The CdTe NW FETs respond to visible-near infrared (400-800 nm) incident light with a fast, reversible and stable response characterized by a high responsivity (81 A W-1), photoconductive gain (similar to 2.5 x 10(4)%) and reasonable response and decay times (0.7 s and 1 s, respectively). These results substantiate the potential of CdTe nanowire-based photodetectors in optoelectronic applications.open112423sciescopu

    The added value of quantitative multi-voxel MR spectroscopy in breast magnetic resonance imaging

    Get PDF
    To determine whether quantitative multivoxel MRS improves the accuracy of MRI in the assessment of breast lesions. Twenty-five consecutive patients with 26 breast lesions a parts per thousand yen1 cm assessed as BI-RADS 3 or 4 with mammography underwent quantitative multivoxel MRS and contrast-enhanced MRI. The choline (Cho) concentration was calculated using the unsuppressed water signal as a concentration reference. ROC analysis established the diagnostic accuracy of MRI and MRS in the assessment of breast lesions. Respective Cho concentrations in 26 breast lesions re-classified by MRI as BI-RADS 2 (n = 5), 3 (n = 8), 4 (n = 5) and 5 (n = 8) were 1.16 +/- 0.43 (mean +/- SD), 1.43 +/- 0.47, 2.98 +/- 2.15 and 4.94 +/- 3.10 mM. Two BI-RADS 3 lesions and all BI-RADS 4 and 5 lesions were malignant on histopathology and had Cho concentrations between 1.7 and 11.8 mM (4.03 +/- 2.72 SD), which were significantly higher (P = 0.01) than that in the 11 benign lesions (0.4-1.5 mM; 1.19 +/- 0.33 SD). Furthermore, Cho concentrations in the benign and malignant breast lesions in BI-RADS 3 category differed (P = 0.01). The accuracy of combined multivoxel MRS/breast MRI BI-RADS re-classification (AUC = 1.00) exceeded that of MRI alone (AUC = 0.96 +/- 0.03). These preliminary data indicate that multivoxel MRS improves the accuracy of MRI when using a Cho concentration cut-off a parts per thousand currency sign1.5 mM for benign lesions. Key Points aEuro cent Quantitative multivoxel MR spectroscopy can improve the accuracy of contrast-enhanced breast MRI. aEuro cent Multivoxel-MRS can differentiate breast lesions by using the highest Cho-concentration. aEuro cent Multivoxel-MRS can exclude patients with benign breast lesions from further invasive diagnostic procedures

    Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions

    Get PDF
    Mental stress modifies both cholinergic neurotransmission and alternative splicing in the brain, via incompletely understood mechanisms. Here, we report that stress changes brain microRNA (miR) expression and that some of these stress-regulated miRs regulate alternative splicing. Acute and chronic immobilization stress differentially altered the expression of numerous miRs in two stress-responsive regions of the rat brain, the hippocampal CA1 region and the central nucleus of the amygdala. miR-134 and miR-183 levels both increased in the amygdala following acute stress, compared to unstressed controls. Chronic stress decreased miR-134 levels, whereas miR-183 remained unchanged in both the amygdala and CA1. Importantly, miR-134 and miR-183 share a common predicted mRNA target, encoding the splicing factor SC35. Stress was previously shown to upregulate SC35, which promotes the alternative splicing of acetylcholinesterase (AChE) from the synapse-associated isoform AChE-S to the, normally rare, soluble AChE-R protein. Knockdown of miR-183 expression increased SC35 protein levels in vitro, whereas overexpression of miR-183 reduced SC35 protein levels, suggesting a physiological role for miR-183 regulation under stress. We show stress-induced changes in miR-183 and miR-134 and suggest that, by regulating splicing factors and their targets, these changes modify both alternative splicing and cholinergic neurotransmission in the stressed brain

    Lithium side effects and toxicity: prevalence and management strategies

    Get PDF
    Despite its virtually universal acceptance as the gold standard in treating bipolar disorder, prescription rates for lithium have been decreasing recently. Although this observation is multifactorial, one obvious potential contributor is the side effect and toxicity burden associated with lithium. Additionally, side effect concerns assuredly play some role in lithium nonadherence. This paper summarizes the knowledge base on side effects and toxicity and suggests optimal management of these problems. Thirst and excessive urination, nausea and diarrhea and tremor are rather common side effects that are typically no more than annoying even though they are rather prevalent. A simple set of management strategies that involve the timing of the lithium dose, minimizing lithium levels within the therapeutic range and, in some situations, the prescription of side effect antidotes will minimize the side effect burden for patients. In contrast, weight gain and cognitive impairment from lithium tend to be more distressing to patients, more difficult to manage and more likely to be associated with lithium nonadherence. Lithium has adverse effects on the kidneys, thyroid gland and parathyroid glands, necessitating monitoring of these organ functions through periodic blood tests. In most cases, lithium-associated renal effects are relatively mild. A small but measurable percentage of lithium-treated patients will show progressive renal impairment. Infrequently, lithium will need to be discontinued because of the progressive renal insufficiency. Lithium-induced hypothyroidism is relatively common but easily diagnosed and treated. Hyperparathyroidism from lithium is a relatively more recently recognized phenomenon

    Biology and biotechnology of Trichoderma

    Get PDF
    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications
    corecore