855 research outputs found

    Battle over shipwrecks, treasure and history at the bottom of the sea

    Get PDF
    Thesis (S.M. in Science Writing)--Massachusetts Institute of Technology, Dept. of Comparative Media Studies, 2013."September 2013." Cataloged from PDF version of thesis.Includes bibliographical references (page 28).Though shipwrecks and treasure are deeply seductive to the public, the political, ethical, and scientific geography surrounding these sunken ships is not well publicized, except in cases involving large amounts of money. There is a battle for access rights to these objects with some claiming them as public historical commons, and others as commodity. Written for a popular audience, this thesis explores the history, technology and common sentiments surrounding shipwrecks from the people who have dedicated their lives to them: commercial firms (treasure hunters, salvors, etc.), academics (maritime archaeologists, conservators, educators, historians and cultural managers) and hobbyist SCUBA divers.by Leslie G. Baehr.S.M.in Science Writin

    Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis.

    Get PDF
    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength

    Soliton equations and the zero curvature condition in noncommutative geometry

    Get PDF
    Familiar nonlinear and in particular soliton equations arise as zero curvature conditions for GL(1,R) connections with noncommutative differential calculi. The Burgers equation is formulated in this way and the Cole-Hopf transformation for it attains the interpretation of a transformation of the connection to a pure gauge in this mathematical framework. The KdV, modified KdV equation and the Miura transformation are obtained jointly in a similar setting and a rather straightforward generalization leads to the KP and a modified KP equation. Furthermore, a differential calculus associated with the Boussinesq equation is derived from the KP calculus.Comment: Latex, 10 page

    Where Nanophotonics and Microfluidics Meet

    Get PDF
    A new generation of photonic devices has recently emerged that relies on using geometries of sub-wavelength microstructures within a high refractive index contrast materials system. These geometries are used to confine and manipulate light within very small volumes. High optical field densities can be obtained within such structures, and these in turn can amplify optical nonlinearities. Moreover, many of these structures, as for example photonic crystals and slotted waveguides, can be engineered for the efficient localization of light within the low-index regions of high index contrast microstructures. When such structures are back-filled nonlinear polymers or liquids, devices can be tuned and novel phenomena can be observed. In particular, such devices are very interesting when constructed from silicon on insulator (SOI) material in which the optical waveguide also serves as a transparent electrical contact. Here we show examples of the design, fabrication and testing of optical microstructures in which the electro-optic (χ2) and photorefractive (χ3) nonlinearities are used for electro-optic tuning, frequency mixing, optical rectification, and high-speed switching of light

    Flow Phase Diagram for the Helium Superfluids

    Full text link
    The flow phase diagram for He II and 3^3He-B is established and discussed based on available experimental data and the theory of Volovik [JETP Letters {\bf{78}} (2003) 553]. The effective temperature - dependent but scale - independent Reynolds number Reeff=1/q=(1+α)/αRe_{eff}=1/q=(1+\alpha')/\alpha, where α\alpha and α\alpha' are the mutual friction parameters and the superfluid Reynolds number characterizing the circulation of the superfluid component in units of the circulation quantum are used as the dynamic parameters. In particular, the flow diagram allows identification of experimentally observed turbulent states I and II in counterflowing He II with the turbulent regimes suggested by Volovik.Comment: 2 figure

    A new downscaling method for sub-grid turbulence modeling

    Get PDF
    In this study we explore a new way to model sub-grid turbulence using particle systems. The ability of particle systems to model small-scale turbulence is evaluated using high-resolution numerical simulations. These high-resolution data are averaged to produce a coarse-grid velocity field, which is then used to drive a complete particle-system-based downscaling. Wind fluctuations and turbulent kinetic energy are compared between the particle simulations and the high-resolution simulation. Despite the simplicity of the physical model used to drive the particles, the results show that the particle system is able to represent the average field. It is shown that this system is able to reproduce much finer turbulent structures than the numerical high-resolution simulations. In addition, this study provides an estimate of the effective spatial and temporal resolution of the numerical models. This highlights the need for higher-resolution simulations in order to evaluate the very fine turbulent structures predicted by the particle systems. Finally, a study of the influence of the forcing scale on the particle system is presented

    Algebraic description of spacetime foam

    Get PDF
    A mathematical formalism for treating spacetime topology as a quantum observable is provided. We describe spacetime foam entirely in algebraic terms. To implement the correspondence principle we express the classical spacetime manifold of general relativity and the commutative coordinates of its events by means of appropriate limit constructions.Comment: 34 pages, LaTeX2e, the section concerning classical spacetimes in the limit essentially correcte

    Dynamical Evolution in Noncommutative Discrete Phase Space and the Derivation of Classical Kinetic Equations

    Full text link
    By considering a lattice model of extended phase space, and using techniques of noncommutative differential geometry, we are led to: (a) the conception of vector fields as generators of motion and transition probability distributions on the lattice; (b) the emergence of the time direction on the basis of the encoding of probabilities in the lattice structure; (c) the general prescription for the observables' evolution in analogy with classical dynamics. We show that, in the limit of a continuous description, these results lead to the time evolution of observables in terms of (the adjoint of) generalized Fokker-Planck equations having: (1) a diffusion coefficient given by the limit of the correlation matrix of the lattice coordinates with respect to the probability distribution associated with the generator of motion; (2) a drift term given by the microscopic average of the dynamical equations in the present context. These results are applied to 1D and 2D problems. Specifically, we derive: (I) The equations of diffusion, Smoluchowski and Fokker-Planck in velocity space, thus indicating the way random walk models are incorporated in the present context; (II) Kramers' equation, by further assuming that, motion is deterministic in coordinate spaceComment: LaTeX2e, 40 pages, 1 Postscript figure, uses package epsfi
    corecore