7 research outputs found
Reduced NoGo-anteriorisation during continuous performance test in deletion syndrome 22q11.2
Deletion syndrome 22q11.2 (DS22q11.2) is a high-risk factor for psychiatric disorders. Alterations in brain morphology and function including the anterior cingulate cortex (ACC) are suggested to underlie the increased psychiatric disposition. We assessed response-inhibition in patients with DS22q11.2 (n=13) and healthy controls (n=13) matched for age, sex, and handedness by means of a Go-NoGo-Task during recording of a multi-channel electroencephalography (EEG). Analysis of event-related potentials (P300) resulted in an aberrant topographical pattern and NoGo-anteriorisation (NGA) as a parameter of medial prefrontal function was significantly reduced in patients with DS22q11.2 compared to controls. Differences in IQ between groups did not account for the findings. Source localization analysis (LORETA) revealed diminished left temporal brain activation during the Go-condition, but no altered ACC activation in DS22q11 during the NoGo-condition. Despite recent reports of structural alterations of the ACC in DS22q11.2 our findings suggest that response-inhibition mediated by the ACC is not impaired in DS22q11.2
Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice
Probably the foremost hypothesis of depression is the 5-hydroxytryptamine (5-HT, serotonin) deficiency hypothesis. Accordingly, anomalies in putative 5-HT biomarkers have repeatedly been reported in depression patients. However, whether such anomalies in fact reflect deficient central 5-HT neurotransmission remains unresolved. We employed a naturalistic model of 5-HT deficiency, the tryptophan hydroxylase 2 (Tph2) R439H knockin mouse, to address this question. We report that Tph2 knockin mice have reduced basal and stimulated levels of extracellular 5-HT (5-HT(Ext)). Interestingly, cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) and fenfluramine-induced plasma prolactin levels are markedly diminished in the Tph2 knockin mice. These data seemingly confirm that low CSF 5-HIAA and fenfluramine-induced plasma prolactin reflects chronic, endogenous central nervous system (CNS) 5-HT deficiency. Moreover, 5-HT(1A) receptor agonist-induced hypothermia is blunted and frontal cortex 5-HT(2A) receptors are increased in the Tph2 knockin mice. These data likewise parallel core findings in depression, but are usually attributed to anomalies in the respective receptors rather than resulting from CNS 5-HT deficiency. Further, 5-HT(2A) receptor function is enhanced in the Tph2 knockin mice. In contrast, 5-HT(1A) receptor levels and G-protein coupling is normal in Tph2 knockin mice, indicating that the blunted hypothermic response relates directly to the low 5-HT(Ext). Thus, we show that not only low CSF 5-HIAA and a blunted fenfluramine-induced prolactin response, but also blunted 5-HT(1A) agonist-induced hypothermia and increased 5-HT(2A) receptor levels are bona fide biomarkers of chronic, endogenous 5-HT deficiency. Potentially, some of these biomarkers could identify patients likely to have 5-HT deficiency. This could have clinical research utility or even guide pharmacotherapy
Molecular genetics of attention-deficit/hyperactivity disorder: an overview
As heritability is high in attention-deficit/hyperactivity disorder (ADHD), genetic factors must play a significant role in the development and course of this disorder. In recent years a large number of studies on different candidate genes for ADHD have been published, most have focused on genes involved in the dopaminergic neurotransmission system, such as DRD4, DRD5, DAT1/SLC6A3, DBH, DDC. Genes associated with the noradrenergic (such as NET1/SLC6A2, ADRA2A, ADRA2C) and serotonergic systems (such as 5-HTT/SLC6A4, HTR1B, HTR2A, TPH2) have also received considerable interest. Additional candidate genes related to neurotransmission and neuronal plasticity that have been studied less intensively include SNAP25, CHRNA4, NMDA, BDNF, NGF, NTF3, NTF4/5, GDNF. This review article provides an overview of these candidate gene studies, and summarizes findings from recently published genome-wide association studies (GWAS). GWAS is a relatively new tool that enables the identification of new ADHD genes in a hypothesis-free manner. Although these latter studies could be improved and need to be replicated they are starting to implicate processes like neuronal migration and cell adhesion and cell division as potentially important in the aetiology of ADHD and have suggested several new directions for future ADHD genetics studies
The genetics of attention deficit/hyperactivity disorder in adults, a review
Item does not contain fulltextThe adult form of attention deficit/hyperactivity disorder (aADHD) has a prevalence of up to 5% and is the most severe long-term outcome of this common neurodevelopmental disorder. Family studies in clinical samples suggest an increased familial liability for aADHD compared with childhood ADHD (cADHD), whereas twin studies based on self-rated symptoms in adult population samples show moderate heritability estimates of 30-40%. However, using multiple sources of information, the heritability of clinically diagnosed aADHD and cADHD is very similar. Results of candidate gene as well as genome-wide molecular genetic studies in aADHD samples implicate some of the same genes involved in ADHD in children, although in some cases different alleles and different genes may be responsible for adult versus childhood ADHD. Linkage studies have been successful in identifying loci for aADHD and led to the identification of LPHN3 and CDH13 as novel genes associated with ADHD across the lifespan. In addition, studies of rare genetic variants have identified probable causative mutations for aADHD. Use of endophenotypes based on neuropsychology and neuroimaging, as well as next-generation genome analysis and improved statistical and bioinformatic analysis methods hold the promise of identifying additional genetic variants involved in disease etiology. Large, international collaborations have paved the way for well-powered studies. Progress in identifying aADHD risk genes may provide us with tools for the prediction of disease progression in the clinic and better treatment, and ultimately may help to prevent persistence of ADHD into adulthood