203 research outputs found

    Bearing Capacity of Spatially Random Cohesive Soil Using Numerical Limit Analyses

    Get PDF
    This paper describes a probabilistic study of the two dimensional bearing capacity of a vertically loaded strip footing on spatially random, cohesive soil using Numerical Limit Analyses (NLAā€CD). The analyses uses a Cholesky Decomposition (CD) technique with midā€point discretization to represent the spatial variation in undrained shear strength within finite element meshes for both upper and lower bound analyses, and assumes an isotropic correlation length. Monte Carlo simulations are then used to interpret the bearing capacity for selected ranges of the coefficient of variation in undrained shear strength and the ratio of correlation length to footing width. The results are compared directly with data from a very similar study by Griffiths et al. in which bearing capacity realizations were computed using a method of Local Average Subdivision (LAS) in a conventional displacementā€based Finite Element Method (FEMā€LAS). These comparisons show the same qualitative features, but suggest that the published FEM calculations tend to overestimate the probability of failure at large correlation lengths. The NLA method offers a more convenient and computationally efficient approach for evaluating effects of variability in soil strength properties in geotechnical stability calculations

    Rainfall-induced differential settlements of foundations on heterogeneous unsaturated soils

    Get PDF
    This study stochastically investigates the rainfall-induced differential settlement of a centrally loaded, rigid strip foundation on an unsaturated soil with spatially varying values of either preconsolidation stress or porosity. The differential settlement (between the two foundation ends) is calculated at various times during rainfall by way of a coupled, hydro-mechanical, finite-element analysis. The Barcelona basic model describes the mechanical behaviour of the soil, and the van Genuchten relationships describe water retention and permeability. The variability of soil properties is modelled by means of random fields with spatial correlation in the framework of a Monte Carlo simulation. The study demonstrates that the occurrence of rainfall-induced differential settlements can be consistently analysed using concepts of unsaturated soil mechanics and random field theory. Results show that differential settlements can be vastly underpredicted (or even completely missed) if random heterogeneity and partial saturation are not simultaneously considered. The variation of differential settlements and their statistics during the rainfall depend on the magnitude of the applied load and the statistics of soil variability. Moreover, the transient phase of infiltration and a spatial correlation length equal to the width of the foundation pose the highest risk of differential settlement

    The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence

    Get PDF
    The collapse of a mine tailings dam and subsequent flood in SE Brazil on 5 November 2015 was preceded by a small-magnitude seismic sequence. In this report, we explore the spatiotemporal associations between the seismic events and the accident and discuss their possible connection. We also analyze the signals generated by the turbulent mudflow, as recorded by the Brazilian Seismographic Network (RSBR). In light of our observations, we propose as possible contributing factor for the dam collapse either ground shaking and/or soil liquefaction triggered by the earthquakes. The possibility of such a small-magnitude earthquake contributing to the collapse of a tailings dam raises important concerns regarding safety and related legislation of dams in Brazil and the world. Ā©2016. American Geophysical Union.H.A.D. and M.A. acknowledge support from Sao Paulo Research Foundation FAPESP grant 2014/09455-3 and CNPq grant 30.6547/2013-9.Peer reviewe

    T Regulatory Cells in Cord Bloodā€”FOXP3 Demethylation as Reliable Quantitative Marker

    Get PDF
    Regulatory T-cells (Tregs), characterized as CD4+CD25(hi) T-cells expressing FOXP3, play a crucial role in controlling healthy immune development during early immune maturation. Recently, FOXP3 demethylation was suggested to be a novel marker for natural Tregs in adults. In cord blood, the role and function of Tregs and its demethylation is poorly understood. We assessed FOXP3 demethylation in cord blood in relation to previously used Treg markers such as CD4+CD25(hi), FOXP3 mRNA, protein expression, and suppressive Treg function

    Graft-vs-tumor effect in patients with advanced nasopharyngeal cancer treated with nonmyeloablative allogeneic PBSC transplantation

    Get PDF
    While nonmyeloablative peripheral blood stem cell transplantation (NST) has shown efficacy against several solid tumors, it is untested in nasopharyngeal cancer (NPC). In a phase II clinical trial, 21 patients with pretreated metastatic NPC underwent NST with sibling PBSC allografts, using CY conditioning, thymic irradiation and in vivo T-cell depletion with thymoglobulin. Stable lymphohematopoietic chimerism was achieved in most patients and prophylactic CYA was tapered at a median of day +30. Seven patients (33%) showed partial response and three (14%) achieved stable disease. Four patients were alive at 2 years and three showed prolonged disease control of 344, 525 and 550 days. With a median follow-up of 209 (4ā€“1147) days, the median PFS was 100 days (95% confidence interval (CI), 66ā€“128 days), and median OS was 209 days (95% CI, 128ā€“236 days). Patients with chronic GVHD had better survivalā€”median OS 426 days (95% CI, 194ā€“NE days) vs 143 days (95% CI, 114ā€“226 days) (P=0.010). Thus, NST may induce meaningful clinical responses in patients with advanced NPC

    Same Point Composable and Nonmalleable Obfuscated Point Functions

    Get PDF
    A point obfuscator is an obfuscated program that indicates if a user enters a previously stored password. A digital locker is stronger: outputting a key if a user enters a previously stored password. The real-or-random transform allows one to build a digital locker from a composable point obfuscator (Canetti and Dakdouk, Eurocrypt 2008). Ideally, both objects would be nonmalleable, detecting adversarial tampering. Appending a non-interactive zero knowledge proof of knowledge adds nonmalleability in the common random string (CRS) model. Komargodski and Yogev (Eurocrypt, 2018) built a nonmalleable point obfuscator without a CRS. We show a lemma in their proof is false, leaving security of their construction unclear. Bartusek, Ma, and Zhandry (Crypto, 2019) used similar techniques and introduced another nonmalleable point function; their obfuscator is not secure if the same point is obfuscated twice. Thus, there was no composable and nonmalleable point function to instantiate the real-or-random construction. Our primary contribution is a nonmalleable point obfuscator that can be composed any polynomial number of times with the same point (which must be known ahead of time). Security relies on the assumption used in Bartusek, Ma, and Zhandry. This construction enables a digital locker that is nonmalleable with respect to the input password. As a secondary contribution, we introduce a key encoding step to detect tampering on the key. This step combines nonmalleable codes and seed-dependent condensers. The seed for the condenser must be public and not tampered, so this can be achieved in the CRS model. The password distribution may depend on the condenserā€™s seed as long as it is efficiently sampleable. This construction is black box in the underlying point obfuscation. Nonmalleability for the password is ensured for functions that can be represented as low degree polynomials. Key nonmalleability is inherited from the class of functions prevented by the nonmalleable code

    Self-tolerance in multiple sclerosis

    Get PDF
    During the last decade, several defects in self-tolerance have been identified in multiple sclerosis. Dysfunction in central tolerance leads to the thymic output of antigen-specific T cells with T cell receptor alterations favouring autoimmune reactions. In addition, premature thymic involution results in a reduced export of naĆÆve regulatory T cells, the fully suppressive clone. Alterations in peripheral tolerance concern costimulatory molecules as well as transcriptional and epigenetic mechanisms. Recent data underline the key role of regulatory T cells that suppress Th1 and Th17 effector cell responses and whose immunosuppressive activity is impaired in patients with multiple sclerosis. Those recent observations suggest that a defect in self-tolerance homeostasis might be the primary mover of multiple sclerosis leading to subsequent immune attacks, inflammation and neurodegeneration. The concept of multiple sclerosis as a consequence of the failure of central and peripheral tolerance mechanisms to maintain a self-tolerance state, particularly of regulatory T cells, may have therapeutic implications. Restoring normal thymic output and suppressive functions of regulatory T cells appears an appealing approach. Regulatory T cells suppress the general local immune response via bystander effects rather than through individual antigen-specific responses. Interestingly, the beneficial effects of currently approved immunomodulators (interferons Ī² and glatiramer acetate) are associated with a restored regulatory T cell homeostasis. However, the feedback regulation between Th1 and Th17 effector cells and regulatory T cells is not so simple and tolerogenic mechanisms also involve other regulatory cells such as B cells, dendritic cells and CD56bright natural killer cells

    Towards Non-Black-Box Separations of Public Key Encryption and One Way Function

    Get PDF
    Separating public key encryption from one way functions is one of the fundamental goals of complexity-based cryptography. Beginning with the seminal work of Impagliazzo and Rudich (STOC, 1989), a sequence of works have ruled out certain classes of reductions from public key encryption (PKE)---or even key agreement---to one way function. Unfortunately, known results---so called black-box separations---do not apply to settings where the construction and/or reduction are allowed to directly access the code, or circuit, of the one way function. In this work, we present a meaningful, non-black-box separation between public key encryption (PKE) and one way function. Specifically, we introduce the notion of BBNāˆ’\textsf{BBN}^- reductions (similar to the BBNp\textsf{BBN}\text{p} reductions of Baecher et al. (ASIACRYPT, 2013)), in which the construction EE accesses the underlying primitive in a black-box way, but wherein the universal reduction RR receives the efficient code/circuit of the underlying primitive as input and is allowed oracle access to the adversary Adv\textsf{Adv}. We additionally require that the number of oracle queries made to Adv\textsf{Adv}, and the success probability of RR are independent of the run-time/circuit size of the underlying primitive. We prove that there is no non-adaptive, BBNāˆ’\textsf{BBN}^- reduction from PKE to one way function, under the assumption that certain types of strong one way functions exist. Specifically, we assume that there exists a regular one way function ff such that there is no Arthur-Merlin protocol proving that ``zāˆˆĢøRange(f)z \not\in \textsf{Range}(f)\u27\u27, where soundness holds with high probability over ``no instances,\u27\u27 yāˆ¼f(Un)y \sim f(U_n), and Arthur may receive polynomial-sized, non-uniform advice. This assumption is related to the average-case analogue of the widely believed assumption coNPāŠ†ĢøNP/poly\textbf{coNP} \not\subseteq \textbf{NP}/\textbf{poly}
    • ā€¦
    corecore