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ABSTRACT:  This paper describes a probabilistic study of the two dimensional bearing 

capacity of a vertically loaded strip footing on spatially random, cohesive soil using Numerical 

Limit Analyses (NLA-CD).  The analyses uses a Cholesky Decomposition (CD) technique with 

mid-point discretization to represent the spatial variation in undrained shear strength within finite 

element meshes for both upper and lower bound analyses, and assumes an isotropic correlation 

length.  Monte Carlo simulations are then used to interpret the bearing capacity for selected 

ranges of the coefficient of variation in undrained shear strength and the ratio of correlation length 

to footing width.  The results are compared directly with data from a very similar study by 

Griffiths et al. in which bearing capacity realizations were computed using a method of Local 

Average Subdivision (LAS) in a conventional displacement-based Finite Element Method 

(FEM-LAS).  These comparisons show the same qualitative features, but suggest that the 

published FEM calculations tend to overestimate the probability of failure at large correlation 

lengths.  The NLA method offers a more convenient and computationally efficient approach for 

evaluating effects of variability in soil strength properties in geotechnical stability calculations. 

 

Keywords: Bearing capacity; cohesive soil, limit analysis; Monte Carlo method; Random field,  
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Introduction 

Recent numerical formulations of upper and lower bound limit analyses for rigid perfectly 

plastic materials, using finite element discretization and linear (Sloan, 1988a; Sloan & Kleeman, 

1995) or non-linear (Lyamin & Sloan, 2002a, b) programming methods, provide a practical, 

efficient and accurate method for performing geotechnical stability calculations.  For example, 

Ukritchon et al. (1998) proposed a solution to the undrained stability of surface footings on 

non-homogeneous and layered clay deposits under the combined effects of vertical, horizontal and 

moment loading to a numerical accuracy of ±5%.  The only parameter used in these Numerical 

Limit Analyses, NLA, is the undrained shear strength (which can vary linearly within a given soil 

layer).  Hence, NLA provides a more convenient method of analyzing stability problems than 

conventional displacement-based finite element methods which also require the specification of 

(elastic) stiffness parameters, simulation and interpretation of the complete non-linear 

load-deformation response up to collapse (e.g., Popescu et al., 2005).  

This paper investigates a probabilistic approach to evaluating the bearing capacity of a 

planar footing on clay by incorporating the stochastic spatial variability of undrained shear 

strength within the numerical limit analyses.  The undrained shear strength is treated as a random 

field (Vanmarcke, 1984) which is characterized by a log-normal distribution and a spatial 

correlation length (i.e., isotropic correlation structure).  The current calculations use a Cholesky 

Decomposition technique with mid-point discretization (Baecher & Christian, 2003; Matthies et 

al., 1997) to incorporate these random properties in numerical limit analyses (NLA-CD).  The 

bearing capacity is then interpreted statistically from a series of Monte Carlo simulations. 

Griffiths and Fenton (2001), Griffiths et al. (2002) and Popescu et al. (2005) have 
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presented similar studies of the undrained bearing capacity of planar footings on clay using 

conventional displacement-based finite element analyses incorporating a linearly-elastic, perfectly 

plastic soil model (with deterministic elastic stiffness properties).  The study by Popescu et al. 

(2005) uses the mid-point method for representing spatial variability of clays with non-Gaussian 

undrained shear strength properties (beta and gamma distribution), while Griffiths and Fenton 

(2001) has used a more rigorous method of Local Area Subdivision to represent spatial variability 

in the finite element model (FEM-LAS; after Fenton & Vanmarcke, 1990) assuming log-normally 

distributed undrained shear strengths. 

The current paper provides a completely independent method of evaluating undrained 

stability, but follows the statistical assumptions on clay shear strength properties and notations 

introduced by Griffiths et al. (2002) to facilitate the comparisons of results. 

 

Numerical Limit Analysis with Spatially Random Cohesive Soil 

Figures 1 illustrates a typical finite element mesh used to compute upper and lower 

bounds on the two dimensional bearing capacity of a vertically loaded plane strain footing of 

width, B.  The lower bound analyses are based on the linear programming formulation presented 

by Sloan (1988a) and assume a linear variation of the unknown stresses (x, y, xy) within each 

triangular element.  The formulation differs from conventional displacement-based finite-element 

formulations by assigning each node uniquely within an element, such that the unknown stresses 

are discontinuous along adjacent edges between elements.  Statically admissible stress fields are 

generated by satisfying: i) a set of linear equality constraints, enforcing static equilibrium with 

triangular elements and along stress discontinuities between the elements, ii) inequality constraints 

that ensure no violation of the linearized material failure criterion.  The current analyses assume 
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a Tresca yield criterion for the undrained shear strength of clay.  The lower-bound estimate of 

the collapse load is then obtained through an objective function that maximizes the resultant 

vertical force acting on the footing.  The linear programming problem is solved efficiently using 

a steepest edge active set algorithm (Sloan, 1988b).   

The upper-bound formulation also discretizes the soil mass into three-noded triangular 

elements, Figure 1, with linear variations in the unknown velocities (ux, uy).  Nodes are unique to 

each element and hence, the edges between elements represent planes of velocity discontinuities.  

Plastic volume strains and shear strain rates can occur within each element as well as along 

velocity discontinuities.  The kinematic constraints are defined by the compatibility equations and 

the condition of associated flow (based on an appropriate linearization of the Tresca criterion) 

within each element and along the velocity discontinuities between elements. The external applied 

load can be expressed as a function of unknown nodal velocities and plastic multiplier rates.  The 

upper-bound on the collapse load is then formulated as a linear programming problem, which 

seeks to minimize the external applied load using an active set algorithm (after Sloan & Kleeman, 

1995).   

One of the principal advantages of NLA is that the true collapse load is always bracketed 

by results from the upper and lower bound calculations (for all materials obeying an associated 

flow rule).  However, careful mesh refinement is essential in order to achieve numerically 

accurate solutions. Sloan (1988a) and Sloan & Kleeman (1995) have reported the influence of 

mesh refinement and approximation of linearized Tresca criterion in the lower bound and upper 

bound numerical limit analyses respectively. Based on prior studies by Ukritchon et al. (1998), the 

current upper bound analyses use a uniform mesh with elements of characteristic dimension 

0.125B, Figure 1.  The size of the discretized domain is sufficient to contain all potential failure 
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mechanisms, such that the far field boundaries can be represented as zero velocity conditions.   

The current study uses a similar uniform mesh for the Lower Bound analyses in order to 

ensure a consistent interpretation of the sample functions of undrained shear strengths.  However, 

extension elements are needed in the LB analyses to ensure that lower-bound conditions are 

rigorously satisfied in the far field.  Prior studies (e.g., Ukritchon et al., 1998) have found that 

the accuracy of LB stress analyses can be improved by increasing mesh density close to 

singularities at the edge of the footing.  The subsequent results show that such refinements are 

unnecessary for the current problem. 

The effects of inherent spatial variability are represented in the analyses by modeling the 

undrained shear strength, su, as a homogeneous random field while the effect of the spatial 

variability of soil density is neglected by assuming the soil to be weightless.  The undrained shear 

strength is assumed to have an underlying log-normal distribution with mean, su
, and standard 

deviation,  su
, and an isotropic scale of fluctuation (also referred to as the correlation length), 

ln su
.  The use of the log-normal distribution is predicated by the fact that su is always a positive 

quantity.  Phoon and Kulhawy (1999) have compiled data on the inherent variability of su and 

report typical Coefficients of Variation in undrained shear strength, COVsu
   su

su
 = 0.1 – 

0.8, based on conventional laboratory shear tests.  The mean and standard deviation of logsu are 

readily derived from COVsu
 and su

 as follows (e.g., Baecher & Christian, 2003): 

 ln su
 ln(1COVsu

2 )       (1) 

 ln su
 lnsu


1

2
 ln su

2
      (2) 

There are much fewer data available to evaluate the scale of fluctuation which 
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corresponds to the physical distance over which there is correlation in the undrained shear 

strength.  Although some studies have found that the horizontal scale of fluctuation can be an 

order of magnitude greater than the vertical scale (e.g., James Bay marine clay deposits; DeGroot 

& Baecher, 1983), the local geological environment is likely to have a major influence on the 

correlation length parameter(s).  Following Griffiths et al. (2002) the current analyses present 

results based on assumed values of the ratio of the correlation length to footing width, 

ln su
  ln su

B . 

The spatial variability is incorporated within the NLA meshes by assigning the undrained 

shear strength corresponding to the i
th
 element: 

sui
 exp(ln su

  ln su
Gi )       (3) 

where 
i

G  is a random variable that is linked to the spatial correlation length, ln su
. 

  Values of Gi are obtained using a Cholesky Decomposition technique (e.g., Baecher & 

Christian, 2003) using an isotropic Markov function which assumes that the correlation decreases 

exponentially with distance between two points i, j : 

(xij )  exp 
2xij

ln su












      (4) 

where  is the correlation coefficient between two random values of su at any points separated 

by a distance xij = |xi – xj| where xi is the position vector of i (located at the center of element i in 

the finite element mesh).  This correlation function can be used to generate a correlation matrix, 

K, which represents the correlation coefficient between each of the elements used in the NLA 

finite element meshes: 
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where ij
  is the correlation coefficient between element i and j, and n the total number of 

elements in the mesh. 

The matrix K is positive definite and hence, the standard Cholesky Decomposition 

algorithm can be used to factor the matrix into triangular forms used in NLA mesh, S and S
T
, 

respectively: 

S
T
S  K        (6) 

The components of S
T
 are specific to a given finite element mesh and selected value of 

the correlation length, ln su
.   

The vector of random variables, G (i.e.,  
n

GGG ,,,
21
 , where Gi specifies the random 

component of the undrained shear strength in element i, eqn. 3) can then be obtained from the 

product: 

G  S
T
X        (7) 

where X is a vector of statistically independent, random numbers  
n

xxx ,,,
21
  with a standard 

normal distribution (i.e., with zero mean and unit standard deviation).  

The current implementation implicitly uses the distance between the centroids to define 

the correlation between undrained shear strengths in adjacent elements.  This is an approximation 

of the random field, which involves the integral of the correlation function over the areas of the 

two elements.  Figure 2 compares the exponential function for four correlation lengths with 

results estimated from a single realization obtained using the proposed mid-point CD technique 
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for the UB mesh shown in Figure 1.  The data show good agreement with the correlation 

function for intervals as small as 0.05B, corresponding to the minimum distance between the 

centroids of adjacent elements.  The results suggest that the current mesh can provide an 

adequate representation for correlation lengths, ln su
≥ 0.1. 

Values of the random variable vector X are then re-generated for each realization in a set 

of Monte Carlo simulations.  Figure 1 illustrates the spatial distribution of undrained shear 

strength obtained for typical mesh for one example simulation with input parameters su
 

=100kPa, 
uc

COV = 0.2 and ln su
= 1.0.  The lighter shaded regions indicate areas of higher shear 

strength.  

 

Bearing Capacity Results 

Upper and lower bound stability calculations have been performed assuming a fixed 

mean value for the undrained shear strength, su
 =100kPa, while varying combinations of the 

coefficient of variation and correlation length over the following ranges: 

COVsu
= 0.2, 0.4, 0.6, 0.8, 1.0, 4.0 

ln su
= 0.1, 0.2, 1.0, 2.0, 4.0, 8.0, 20 

Figure 3 illustrates the effects of the correlation length parameter on the mechanisms of 

failure from a series of three UB simulations with COVsu
 = 0.4 and ln su

= 0.2, 1.0, 2.0.  Each 

example shows the specific realization of the undrained strength field superimposed on the 

deformed FE mesh, together with the vectors of the computed velocity field (dark shaded regions 

in these figures represent locations where plastic distortion occurs within the finite elements).  

The strength field appears ragged for ln su
= 0.2 but is much smoother forln su

= 1.0, 2.0.  
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Close inspection shows that the computed failure mechanisms find paths of least resistance, 

passing through weaker regions of the clay. 

A series of 1000 Monte Carlo simulations have been performed for each combination of 

the input parameters ( COVsu
, ln su

).  The computed bearing capacity factor, Nci, can then be 

reported for each realization of the shear strength field: 

Nci  q fi su
,                where i = 1,2,… n…1000  (8) 

where qfi is the computed collapse load (either UB or LB). 

The mean, 
cN

 , and standard deviation, 
cN

 , of the bearing capacity factor are recorded 

through each set of Monte Carlo simulations, as follows: 

Nc


1

n
Nci

i1

n

 ; 






n

i

NciN cc
N

n 1

2)(
1

1
.   (9) 

 Figure 4 illustrates one set of results for the case with ln su
= 2.0, COVsu

= 0.2 and 0.8.  

The results confirm that the collapse load for any given realization is well bounded by 
cN

  from 

the UB and LB calculations.  The mean and standard deviation of Nc become stable within a few 

hundred simulations. 

Table 1 summarizes the statistical data for the bearing capacity factor for all 

combinations of the input parameters.  In all cases the results show Nc
UB  > Nc

LB , and 

the actual collapse load is typically bounded within ±5-10% showing acceptable accuracy from the 

numerical limit analyses.  The data also show Nc
UB  > Nc

LB .  This latter result may 

reflect differences in the upper bound and lower bound limit analyses.  However, it is notable 

that the numerical limit analyses generate much smaller coefficients of variation in bearing 

capacity than were reported by Griffiths et al. (2002) from FEM-LAS simulations (the data in 
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Table 1 show COVNc
  Nc

Nc
= 0.03 – 1.16). 

Figure 5 presents a 20-bin histogram of the bearing capacity factor from one complete 

series of Monte Carlo simulations with COVsu
= 0.2 and ln su

= 2.0 together with the estimated 

normal distribution.  In order to obtain the distribution function of the bearing capacity factor 

based on 2  goodness-of-fit tests, Table 1 summarizes 2 statistics for all of the simulations and 

confirms that normal or log-normal distribution functions can be used to characterize the bearing 

capacity at a 5% significance level  (with acceptance level, 2012

2 0.05  = 27.6). 

Figures 6a and 6b summarize the ratio of the mean bearing capacity factor to the 

deterministic solution for homogeneous clay, 

Nc   Nc

NcDet  (where NcDet    2   ) for 

combinations of the input parameters ( COVsu
, ln su

).  In general, 
Nc

< 1 and hence spatial 

variability causes a reduction in the expected undrained bearing capacity.  The trends show that 

the largest reductions in Nc
occur when the coefficient of variation is high and/or the correlation 

length is small.  Assuming a maximum realistic range, COVsu
  0.6 – 0.8, the results suggest 

that the expected bearing capacity could be as little as 60% of the deterministic value.   

Qualitatively similar results have been presented by Griffiths et al. (2002).  However, 

these Authors also report a local minimum in the expected bearing capacity for ln su
≈ 1.0, which 

is not seen in the current numerical limit analyses (Fig. 6b).  The current analyses do show a 

widening gap between LB and UB solutions for ln su
< 1.0 (i.e., loss of accuracy), which reflects 

the underlying problem of stochastic discretization that requires elements to be smaller than the 

spatial correlation length (e.g., Matthies et al., 1997).  As a result, the current  NLA-CD 

analyses do not converge to the theoretical limits as ln su
 0.  
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Probability of Failure 

In conventional working stress design practice an average undrained shear strength is 

used to compute the ultimate bearing capacity, while the allowable/nominal load is then obtained 

by applying a global safety factor, FS = 2.0 – 3.0.  In the current calculations the probability that 

the bearing capacity is less than a given level of applied load can be obtained by assuming that Nc 

can be described by either a normal or log-normal distribution (as shown in Table 1).  If Nc is 

log-normally distributed, the probability that the bearing capacity is less than the nominal load is 

given by: 

P[Nc  NcDet / FS]  
ln( 2   / FS) ln Nc

 ln Nc









    (10) 

where (..) is the cumulative normal function and values of  ln Nc
,  ln Nc

are reported from the 

NLA-CD analyses in Table 1. 

Figure 7 summarizes predictions that the probability of bearing failure is less than the 

nominal load level for FS = 1.0, 2.0 and 3.0 as functions of the coefficient of variation in 

undrained shear strength, COVsu
, for correlation length parameters, ln su

 = 1.0, 2.0 and 4.0.  

As expected, when spatial variability is included in the analyses, the ultimate bearing capacity is 

almost always less than the deterministic capacity based on the mean shear strength.  These 

results agree with earlier solutions from FEM-LAS reported by Griffiths et al. (2002) (for the 

same range of input parameters).   

The probability that the bearing capacity is less than the nominal design load for FS = 2.0 

and 3.0 decreases very markedly with the coefficient of variation in undrained shear strength, 

especially for COVsu
< 1.0, Figure 7, and also with increasing values of the spatial correlation 
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length ratio, ln su
.   

For ln su
= 1.0, the UB predictions of the probability, P[Nc< NcDet/FS] are in excellent 

agreement with prior data presented by Griffiths et al. (2002).  However, the current analyses 

show lower event probabilities for correlation length ratios, ln su
= 2.0, 4.0.  The source of this 

discrepancy is not obvious and deserves further investigation. 

Figure 8 offers a more detailed comparison of the probability of bearing failure implicitly 

defined in conventional design methods with the actual probabilities of failure derived from the 

stochastic NLA-CD analyses accounting for inherent spatial variability.   The figures plot the 

P[Nc< NcDet/FS] as functions of the safety factor, FS for selected ranges of the input parameters 

COVsu
and ln su

.  The target probabilities of failure considered in LRFD codes for shallow 

foundations are reported in the range, Pf = 10
-2

 – 10
-3

 (Baecher & Christian, 2003; Phoon et al., 

2000).  The results in Figure 8a show that P[Nc< NcDet/FS] is much less than this target 

condition for small values of the coefficient of variation, COVsu
= 0.2.  There is close agreement 

between the conventional working stress design and LFRD methods for COVsu
= 0.4, 0.6, Figures 

8b, c.  However, in exceptional cases with COVsu
= 0.8 and ln su

 1.0, the estimated 

probability of failure can exceed Pf = 10
-2

 at FS = 3.0. 

 

Conclusions 

This paper summarizes the implementation of a mid-point Cholesky Decomposition 

method for representing inherent spatial variability of undrained shear strength in Monte Carlo 

simulations of bearing capacity for a rough, surface strip footing on clay using Numerical Limit 

Analyses (NLA-CD).  Accurate estimates of the exact bearing capacity are achieved in each 
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Monte-Carlo realization.  The analyses assume that undrained shear strength is described by a 

log-normal distribution function, while effects of spatial variability are characterized by two input 

parameters, i) the coefficient of variation, COVsu
 and ii) an isotropic correlation length ratio, 

ln su
.  Stable bearing capacity statistics were derived from a series 1000 Monte Carlo 

simulations for each set on input parameters.  The current parametric calculations are then 

compared with results from a similar study reported by Griffiths et al. (2002) using a completely 

independent method of analysis (FEM-LAS).   

The results confirm that spatial variability reduces the bearing capacity of the footing 

relative to a deterministic calculation based on the mean undrained shear strength.  This result 

occurs due to changes in the predicted failure mechanisms which form through weaker regions in 

the clay.  The lowest values in the computed ratio, 

Nc   Nc

NcDet , occur at high values of 

COVsu
and small correlation length ratios (ln su

< 1) in this analyses. 

Although there is very good qualitative agreement with results presented by Griffiths et 

al. (2002) the current analyses generally suggest lower probabilities of design failure for the same 

input properties of the undrained shear strength field.  This result will require further 

investigation through direct comparison of stochastic NLA and FEM methods. 

The results suggest that target probabilities for bearing failure in the range Pf = 10
-2

 – 

10
-3

 are consistent with conventional working stress design methods using FS = 2.0 – 3.0 except 

in cases where there is very high coefficient of variation, COVsu
≥ 0.8 and/or small correlation 

ratios, ln su
< 1. 
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NOTATION 

B = width of foundation; 

COVsu
 = coefficient of variation of undrained shear strength; 

su
 = undrained shear strength; 

sui
 = undrained shear strength of ith element; 

FS = safety factor; 

G(x) = standard Gaussian field with zero mean unit variance; 

G(xi) = local value of standard Gaussian field with zero mean unit variance for ith element; 

c
N  = bearing capacity factor; 

ic
N  = bearing capacity factor for i

th
 realization; 

P[…] = probability; 

ux, uy = velocity components in x and y directions 

xi
 = position vector at center of i

th
 element; 

ln su
 =ln su

B , dimensionless correlation length ratio,; 

ln su
 = spatial correlation length; 

su
 = mean undrained shear strength; 

 ln su
 = mean of log undrained shear strength; 

 ln Nc
 = mean of log bearing capacity factor; 

Nc
 = mean bearing capacity factor; 

 = correlation coefficient; 

 su
 = standard deviation of undrained shear strength; 
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 ln su
 = standard deviation of log undrained shear strength; 

 ln Nc
 = standard deviation of log bearing capacity factor; 

Nc
 = standard deviation of bearing capacity factor; 

(...)  = cumulative normal function. 
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Table 1. Bearing capacity factor statistics and goodness of fit results for normal and log-normal 

distribution

LB UB
ln us ucCOV

cN cN 2 cNln
cNln 2 cN cN 2 cNln

cNln 2
0.2 4.330 0.082 22.2 1.465 0.019 24.3 4.815 0.099 27.1 1.572 0.021 22.3
0.4 3.572 0.127 20.2 1.272 0.036 19.2 4.16 0.171 24.5 1.425 0.041 24.2

0.6 2.858 0.154 24.0 1.049 0.054 27.2 3.472 0.217 22.8 1.243 0.062 27.3

0.8 2.353 0.145 21.3 0.854 0.061 25.1 2.937 0.208 22.3 1.075 0.07 15.1

1.0 1.921 0.157 14.2 0.649 0.084 10.4 2.467 0.238 22.3 0.898 0.099 24.1

0.1

4.0 0.375 0.070 22.3 -0.998 0.192 22.8 0.555 0.119 17.8 -0.613 0.224 11.9

0.2 4.425 0.108 24.9 1.487 0.024 21.2 4.821 0.126 22.4 1.573 0.026 26.4

0.4 3.737 0.178 27.4 1.317 0.047 16.6 4.215 0.225 14.4 1.437 0.053 24.5

0.6 3.053 0.257 20.8 1.112 0.085 16.7 3.512 0.375 18.7 1.250 0.108 24.2

0.8 2.545 0.247 21.2 0.929 0.098 26.1 2.986 0.345 21.2 1.087 0.117 23.7

1.0 2.146 0.257 26.8 0.756 0.126 19.3 2.580 0.352 26.7 0.938 0.145 14.7

0.2

4.0 0.449 0.112 26.7 -0.835 0.268 22.8 0.591 0.168 13.7 -0.570 0.308 15.8

0.2 4.617 0.238 14.4 1.528 0.052 15.1 4.788 0.301 25.3 1.564 0.063 25.2
0.4 4.033 0.512 21.5 1.386 0.132 20.3 4.187 0.584 26.5 1.422 0.144 27.2

0.6 3.541 0.568 15.1 1.250 0.173 24.8 3.701 0.645 22.7 1.292 0.191 20.7

0.8 3.155 0.589 14.5 1.127 0.229 26.2 3.241 0.682 12.9 1.148 0.253 21.0

1.0 2.721 0.722 21.1 0.958 0.312 17.9 2.807 0.833 15.0 0.979 0.349 17.7

1

4.0 0.877 0.589 27.6 -0.405 0.730 21.0 0.899 0.663 25.1 -0.346 0.809 19.0

0.2 4.731 0.260 22.7 1.553 0.056 15.0 4.860 0.307 16.2 1.579 0.064 20.4
0.4 4.278 0.476 15.7 1.447 0.120 26.8 4.342 0.539 25.1 1.460 0.132 15.2

0.6 3.785 0.609 24.1 1.317 0.175 24.4 3.823 0.722 21.3 1.321 0.205 20.4

0.8 3.418 0.758 18.4 1.202 0.244 26.4 3.457 0.860 17.9 1.206 0.275 26.2

1.0 3.102 0.849 12.2 1.084 0.289 22.5 3.137 0.935 11.2 1.104 0.318 18.7

2

4.0 1.417 0.805 27.1 0.126 0.644 21.9 1.503 0.899 26.7 0.230 0.710 16.7

0.2 4.825 0.185 25.0 1.573 0.038 25.0 4.940 0.225 9.7 1.596 0.046 10.6

0.4 4.522 0.369 21.1 1.506 0.083 22.7 4.605 0.461 21.4 1.522 0.103 14.3

0.6 4.235 0.512 18.6 1.436 0.125 21.5 4.318 0.606 20.4 1.452 0.146 23.3

0.8 3.698 0.726 23.5 1.280 0.216 24.5 3.703 0.822 20.2 1.288 0.245 24.4

1.0 3.478 0.801 20.6 1.206 0.262 21.2 3.496 0.904 25.3 1.221 0.299 25.8

4

4.0 1.958 0.938 22.1 0.512 0.576 21.6 1.976 0.973 22.3 0.541 0.627 22.9

0.2 4.894 0.170 20.6 1.587 0.035 15.0 5.022 0.189 18.9 1.613 0.038 21.1
0.4 4.676 0.317 25.6 1.540 0.069 18.6 4.739 0.399 19.2 1.552 0.087 21.9

0.6 4.432 0.431 24.8 1.484 0.099 18.7 4.485 0.534 21.5 1.494 0.121 12.1

0.8 4.140 0.652 17.4 1.407 0.166 24.8 4.200 0.77 15.2 1.417 0.195 16.2

1.0 3.882 0.610 21.9 1.341 0.166 14.1 3.894 0.721 14.7 1.343 0.193 18.7

8

4.0 2.773 0.925 16.4 0.936 0.388 19.6 2.817 1.034 19.2 0.970 0.441 14.8

0.2 4.938 0.113 8.2 1.597 0.023 9.9 5.085 0.137 25.0 1.626 0.027 26.5
0.4 4.845 0.226 20.6 1.577 0.047 24.8 4.945 0.278 27.5 1.597 0.056 25.2

0.6 4.688 0.312 26.0 1.543 0.068 21.7 4.762 0.392 23.3 1.557 0.082 14.0

0.8 4.530 0.381 7.9 1.507 0.085 16.5 4.584 0.470 25.1 1.517 0.102 24.0

1.0 4.454 0.431 13.2 1.489 0.101 15.9 4.506 0.511 10.8 1.499 0.113 15.5

20

4.0 3.468 0.783 16.7 1.209 0.235 26.9 3.503 0.880 18.7 1.227 0.250 17.8

Note: Acceptance criterion 2 20-1-2 ]05.0[  27.6
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