15,341 research outputs found

    On the Swimming of \textit{Dictyostelium} amoebae

    Full text link
    Traditionally, the primary mode for locomotion of amoeboid cells was thought to be crawling on a substrate. Recently, it has been experimentally shown that \textit{Dictostelium} amoeba and neutrophils can also swim in a directed fashion. The mechanisms for amoeboid crawling and swimming were hypothesized to be similar. In this letter, we show that the shape changes generated by a crawling \textit{D. discoideum} cell are consistent with swimming.Comment: letter submitted to PNA

    Mobility and Saturation Velocity in Graphene on SiO2

    Full text link
    We examine mobility and saturation velocity in graphene on SiO2 above room temperature (300-500 K) and at high fields (~1 V/um). Data are analyzed with practical models including gated carriers, thermal generation, "puddle" charge, and Joule heating. Both mobility and saturation velocity decrease with rising temperature above 300 K, and with rising carrier density above 2x10^12 cm^-2. Saturation velocity is >3x10^7 cm/s at low carrier density, and remains greater than in Si up to 1.2x10^13 cm^-2. Transport appears primarily limited by the SiO2 substrate, but results suggest intrinsic graphene saturation velocity could be more than twice that observed here

    Dilaton Stabilization and Inflation in the D-brane World

    Full text link
    We study the dilaton stabilization in the D-brane world in which a D-brane constitutes our universe. The dilaton can be stabilized due to the interplay between the D-brane tension and the negative scalar curvature of extra dimensions. Cosmic evolution of the dilaton is investigated with the obtained dilaton potential and it is found that inflation can be realized before the settlement of the dilaton.Comment: 10 pages, abstract correcte

    A V-Diagram for the Design of Integrated Health Management for Unmanned Aerial Systems

    Get PDF
    Designing Integrated Vehicle Health Management (IVHM) for Unmanned Aerial Systems (UAS) is inherently complex. UAS are a system of systems (SoS) and IVHM is a product-service, thus the designer has to take into account many factors, such as: the design of the other systems of the UAS (e.g. engines, structure, communications), the split of functions between elements of the UAS, the intended operation/mission of the UAS, the cost verses benefit of monitoring a system/component/part, different techniques for monitoring the health of the UAS, optimizing the health of the fleet and not just the individual UAS, amongst others. The design of IVHM cannot sit alongside, or after, the design of UAS, but itself be integrated into the overall design to maximize IVHM’s potential. Many different methods exist to help design complex products and manage the process. One method used is the V-diagram which is based on three concepts: decomposition & definition; integration & testing; and verification & validation. This paper adapts the V-diagram so that it can be used for designing IVHM for UAS. The adapted v-diagram splits into different tracks for the different system elements of the UAS and responses to health states (decomposition and definition). These tracks are then combined into an overall IVHM provision for the UAS (integration and testing), which can be verified and validated. The stages of the adapted V-diagram can easily be aligned with the stages of the V-diagram being used to design the UAS bringing the design of the IVHM in step with the overall design process. The adapted V-diagram also allows the design IVHM for a UAS to be broken down in to smaller tasks which can be assigned to people/teams with the relevant competencies. The adapted V-diagram could also be used to design IVHM for other SoS and other vehicles or products

    Axinos as Dark Matter

    Get PDF
    Supersymmetric extensions of the Standard Model that incorporate the axion solution to the strong CP problem necessarily contain also the axino, the fermionic partner of the axion. In contrast to the neutralino and the gravitino, the axino mass is generically not of the order of the supersymmetry-breaking scale and can be much smaller. The axino is therefore an intriguing candidate for a stable superpartner. In a previous Letter [1] it was shown that axinos are a natural candidate for cold dark matter in the Universe when they are generated non-thermally through out-of-equilibrium neutralino decays. Here, we extend the study of non-thermal production and include a competing thermal production mechanism through scatterings and decays of particles in the plasma. We identify axino masses in the range of tens of MeV to several GeV (depending on the scenario) as corresponding to cold axino relics if the reheating temperature \treh is less than about 5\times10^4\gev. At higher \treh and lower mass, axinos could constitute warm dark matter. In the scenario with axinos as relics, the gravitino problem finds a natural solution. The lightest superpartner of the Standard Model spectrum remains effectively stable in high-energy detectors but may be either neutral or charged. The usual highly restrictive constraint \abundchi\lsim1 on the relic abundance of the lightest neutralino becomes void.Comment: 38 pages, a version to be published at JHE

    Hamiltonian and measuring time for analog quantum search

    Full text link
    We derive in this study a Hamiltonian to solve with certainty the analog quantum search problem analogue to the Grover algorithm. The general form of the initial state is considered. Since the evaluation of the measuring time for finding the marked state by probability of unity is crucially important in the problem, especially when the Bohr frequency is high, we then give the exact formula as a function of all given parameters for the measuring time.Comment: 5 page

    Surplus Angle and Sign-flipped Coulomb Force in Projectable Horava-Lifshitz Gravity

    Full text link
    We obtain the static spherically symmetric vacuum solutions of Horava-Lifshitz gravity theory, imposing the detailed balance condition only in the UV limit. We find the solutions in two different coordinate systems, the Painlev\'e-Gullstrand coordinates and the Poincare coordinates, to examine the consequences of imposing the projectability condition. The solutions in two coordinate systems are distinct due to the non-relativistic nature of the HL gravity. In the Painleve-Gullstrand coordinates complying with the projectability condition, the solution involves an additional integration constant which yields surplus angle and implies attractive Coulomb force between same charges.Comment: 13 page

    Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    Full text link
    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398
    corecore