714 research outputs found

    Human error control in the collaborative workflow modeling tool based on GEMS model

    Get PDF
    Business process should support the execution of collaboration process with agility and flexibility through the integration of enterprise inner or outer application and human resources from the collaborative workflow view.Although the dependency of enterprise activities to the automated system has been increasing, human role is as important as ever.In the workflow modelling this human role is emphasized and the structure to control human error by analysing decision-making itself is needed.Also, through the collaboration of activities agile and effective communication should be constructed, eventually by the combination and coordination of activities to the aimed process the product quality should be improved.This paper classifies human errors can be occurred in collaborative workflow by applying GEMS(Generic Error Modelling System) to control them, and suggests human error control method through hybrid based modelling as well.On this base collaborative workflow modeling tool is designed and implemented. Using this modelling methodology it is possible to workflow modeling could be supported considering human characteristics has a tendency of human error to be controlled

    The mechanism of low-concentration sodium nitroprusside-mediated protection of chondrocyte death

    Get PDF
    Sodium nitroprusside (SNP), a widely used nitric oxide donor, has recently been shown to mediate chondrocyte apoptosis by generating reactive oxygen species, whereas more potent nitric oxide donors do not induce chondrocyte apoptosis. The present study was performed to investigate the protective effect of a low concentration of SNP upon the cytotoxicity of chondrocytes to higher concentrations of SNP, and to elucidate the underlying mechanism. Human osteoarthritis chondrocytes were cultured as monolayers, and first-passage cells were used for the experiments. Chondrocyte death induced by 1 mM SNP was completely inhibited by pretreating with 0.1 mM SNP. This protective effect of SNP was replicated by the guanosine-3',5'κ-cyclic monophosphate analog, DBcGMP. Protection from chondrocyte death conferred by 0.1 mM SNP was mediated by heme oxygenase 1 (HO-1), as was revealed by the increased expression of HO-1 in 0.1 mM SNP pretreated chondrocytes and by the reversal of this protective effect by the HO-1 inhibitor, zinc protoporphyrin. SNP-mediated chondrocyte protection correlated with the downregulation of both extracellular signal-regulated protein kinase 1/2 and p38 kinase activation. SNP at 0.1 mM induced significant NF-κB activation as revealed by electrophoretic mobility shift assays, and the inhibition of NF-κB by MG132 or Bay 11-7082 nullified 0.1 mM SNP-mediated chondrocyte protection. The upregulation of p53 and the downregulation of Bcl-(XL )and Mcl-1 by 1 mM SNP were reversed by 0.1 mM SNP pretreatment at the protein level by western blotting. Our study shows that priming with 0.1 mM SNP confers complete protection against cell death induced by 1 mM SNP in human articular chondrocytes. This protective effect was found to be correlated with the upregulation of both HO-1 and NF-κB and with the concomitant downregulation of both extracellular signal-regulated protein kinase 1/2 and p38 activation

    Peptidyl arginine deiminase type IV (PADI4) haplotypes interact with shared epitope regardless of anti-cyclic citrullinated peptide antibody or erosive joint status in rheumatoid arthritis: a case control study

    Get PDF
    Introduction: Anti-cyclic citrullinated peptide autoantibodies (anti-CCP) are the most specific serologic marker for rheumatoid arthritis (RA). Genetic polymorphisms in a citrullinating (or deiminating) enzyme, peptidyl arginine deiminase type IV (PADI4) have been reproducibly associated with RA susceptibility in several populations. We investigated whether PADI4 polymorphisms contribute to anti-CCP-negative as well as -positive RA, whether they influence disease severity (erosive joint status), and whether they interact with two major risk factors for RA, Human Leukocyte Antigen-DRB1 (HLA-DRB1) shared epitope (SE) alleles and smoking, depending on anti-CCP and erosive joint status.Methods: All 2,317 unrelated Korean subjects including 1,313 patients with RA and 1,004 unaffected controls were genotyped for three nonsynonymous (padi4_89, padi4_90, and padi4_92) and one synonymous (padi4_104) singlenucleotide polymorphisms (SNPs) in PADI4 and for HLA-DRB1 by direct DNA sequence analysis. Odds ratios (OR) were calculated by multivariate logistic regression. Interaction was evaluated by attributable proportions (AP), with 95% confidence intervals (CI).Results: A functional haplotype of the three fully correlated nonsynonymous SNPs in PADI4 was significantly associated with susceptibility to not only anti-CCP-positive (adjusted OR 1.73, 95% CI 1.34 to 2.23) but also -negative RA (adjusted OR 1.75, 95% CI 1.15 to 2.68). A strong association with both non-erosive (adjusted OR 1.62, 95% CI 1.29 to 2.05) and erosive RA (adjusted OR 1.62, 95% CI 1.14 to 2.31) was observed for PADI4 haplotype. Gene-gene interactions between the homozygous RA-risk PADI4 haplotype and SE alleles were significant in both anti-CCP-positive (AP 0.45, 95% CI 0.20 to 0.71) and -negative RA (AP 0.61, 95% CI 0.29 to 0.92). Theses interactions were also observed for both non-erosive (AP 0.48, 95% CI 0.25 to 0.72) and erosive RA (AP 0.46, 95% CI 0.14 to 0.78). In contrast, no interaction was observed between smoking and PADI4 polymorphisms.Conclusions: A haplotype of nonsynonymous SNPs in PADI4 contributes to development of RA regardless of anti-CCP or erosive joint status. The homozygous PADI4 haplotype contri bution is affected by gene-gene interactions with HLADRB1 SE alleles.We are grateful to many research workers for assistance with sample preparation, data collection, and technical study. Dr. Bang's work was supported by a grant from the Korea Healthcare Technology R&D Project (A090706). Dr. Bae's work was supported by a grant from the Korea Healthcare Technology R&D Project (A084794 and A010252). Dr. Kang's work was supported by a grant from the Research Program for New Drug Target Discovery (M10748000231-08N4800-23110)

    Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population

    Get PDF
    Recently, two studies provided convincing evidence that IFN regulatory factor 5 (IRF5) gene polymorphisms are significantly associated with systemic lupus erythematosus (SLE) in several white populations. To replicate the association with SLE in an Asian population, we examined the genetic effects in our SLE cohort from a Korean population. A total of 1,565 subjects, composed of 593 cases and 972 controls, were genotyped using the TaqMan® (Applied Biosystems, Foster City, CA, USA) method. The genetic effects of polymorphisms on the risk of SLE were evaluated using χ2 tests and a Mantel–Haenszel meta-analysis. Statistical analysis revealed results in the Korean population were similar to the previous reports from white populations. The rs2004640 T allele had a higher frequency in SLE cases (0.385) than controls (0.321; odds ratio (OR) = 1.32, P = 0.0003). In combined analysis, including all seven independent cohorts from the three studies so far, robust and consistent associations of the rs2004640 T allele with SLE were observed. The estimate of risk was OR = 1.44 (range, 1.34–1.55), with an overall P = 1.85 × 10-23 for the rs2004640 T allele. The haplotype (rs2004640T–rs2280714T) involved in both the alternative splice donor site and the elevated expression of IRF5 also had a highly significant association with SLE (pooled, P = 2.11 × 10-16). Our results indicate that the genetic effect on the risk of SLE mediated by IRF5 variants can be generally accepted in both white and Asian populations

    Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus.

    Get PDF
    BackgroundDiabetic cardiomyopathy (DM CMP) is defined as cardiomyocyte damage and ventricular dysfunction directly associated with diabetes independent of concomitant coronary artery disease or hypertension. Matrix metalloproteinases (MMPs), especially MMP-2, have been reported to underlie the pathogenesis of DM CMP by increasing extracellular collagen content.PurposeWe hypothesized that two discrete MMP-2 isoforms (full length MMP-2, FL-MMP-2; N-terminal truncated MMP-2, NTT-MMP-2) are induced by high glucose stimulation in vitro and in an experimental diabetic heart model.MethodsRat cardiomyoblasts (H9C2 cells) were examined to determine whether high glucose can induce the expression of the two isoforms of MMP-2. For the in vivo study, we used the streptozotocin-induced DM mouse heart model and age-matched controls. The changes of each MMP-2 isoform expression in the diabetic mice hearts were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical stains were conducted to identify the location and patterns of MMP-2 isoform expression. Echocardiography was performed to compare and analyze the changes in cardiac function induced by diabetes.ResultsQuantitative RT-PCR and immunofluorescence staining showed that the two MMP-2 isoforms were strongly induced by high glucose stimulation in H9C2 cells. Although no definite histologic features of diabetic cardiomyopathy were observed in diabetic mice hearts, left ventricular systolic dysfunction was determined by echocardiography. Quantitative RT-PCR and IHC staining showed this abnormal cardiac function was accompanied with the increases in the mRNA levels of the two isoforms of MMP-2 and related to intracellular localization.ConclusionTwo isoforms of MMP-2 were induced by high glucose stimulation in vitro and in a Type 1 DM mouse heart model. Further study is required to examine the role of these isoforms in DM CMP
    corecore