49 research outputs found

    Dynamic Imaging of the Effector Immune Response to Listeria Infection In Vivo

    Get PDF
    Host defense against the intracellular pathogen Listeria monocytogenes (Lm) requires innate and adaptive immunity. Here, we directly imaged immune cell dynamics at Lm foci established by dendritic cells in the subcapsular red pulp (scDC) using intravital microscopy. Blood borne Lm rapidly associated with scDC. Myelomonocytic cells (MMC) swarmed around non-motile scDC forming foci from which blood flow was excluded. The depletion of scDC after foci were established resulted in a 10-fold reduction in viable Lm, while graded depletion of MMC resulted in 30–1000 fold increase in viable Lm in foci with enhanced blood flow. Effector CD8+ [CD8 superscript +] T cells at sites of infection displayed a two-tiered reduction in motility with antigen independent and antigen dependent components, including stable interactions with infected and non-infected scDC. Thus, swarming MMC contribute to control of Lm prior to development of T cell immunity by direct killing and sequestration from blood flow, while scDC appear to promote Lm survival while preferentially interacting with CD8+ [CD8 superscript +] T cells in effector sites.National Institutes of Health (U.S.) (Grant P01AI-071195

    Murine CD4+ T Cell Responses Are Inhibited by Cytotoxic T Cell-Mediated Killing of Dendritic Cells and Are Restored by Antigen Transfer

    Get PDF
    Cytotoxic T lymphocytes (CTL) provide protection against pathogens and tumors. In addition, experiments in mouse models have shown that CTL can also kill antigen-presenting dendritic cells (DC), reducing their ability to activate primary and secondary CD8+ T cell responses. In contrast, the effects of CTL-mediated killing on CD4+ T cell responses have not been fully investigated. Here we use adoptive transfer of TCR transgenic T cells and DC immunization to show that specific CTL significantly inhibited CD4+ T cell proliferation induced by DC loaded with peptide or low concentrations of protein antigen. In contrast, CTL had little effect on CD4+ T cell proliferation induced by DC loaded with high protein concentrations or expressing antigen endogenously, even if these DC were efficiently killed and failed to accumulate in the lymph node (LN). Residual CD4+ T cell proliferation was due to the transfer of antigen from carrier DC to host APC, and predominantly involved skin DC populations. Importantly, the proliferating CD4+ T cells also developed into IFN-γ producing memory cells, a property normally requiring direct presentation by activated DC. Thus, CTL-mediated DC killing can inhibit CD4+ T cell proliferation, with the extent of inhibition being determined by the form and amount of antigen used to load DC. In the presence of high antigen concentrations, antigen transfer to host DC enables the generation of CD4+ T cell responses regardless of DC killing, and suggests mechanisms whereby CD4+ T cell responses can be amplified

    CD40-Activated B Cells Can Efficiently Prime Antigen-Specific Naïve CD8+ T Cells to Generate Effector but Not Memory T cells

    Get PDF
    Background: The identification of the signals that should be provided by antigen-presenting cells (APCs) to induce a CD8 + T cell response in vivo is essential to improve vaccination strategies using antigen-loaded APCs. Although dendritic cells have been extensively studied, the ability of other APC types, such as B cells, to induce a CD8 + T cell response have not been thoroughly evaluated. Methodology/Principal Findings: In this manuscript, we have characterized the ability of CD40-activated B cells, stimulated or not with Toll-like receptor (TLR) agonists (CpG or lipopolysaccharide) to induce the response of mouse naïve CD8 + T cells in vivo. Our results show that CD40-activated B cells can directly present antigen to naïve CD8 + T cells to induce the generation of potent effectors able to secrete cytokines, kill target cells and control a Listeria monocytogenes infection. However, CD40-activated B cell immunization did not lead to the proper formation of CD8 + memory T cells and further maturation of CD40-activated B cells with TLR agonists did not promote the development of CD8 + memory T cells. Our results also suggest that inefficient generation of CD8 + memory T cells with CD40-activated B cell immunization is a consequence of reduced Bcl-6 expression by effectors and enhanced contraction of the CD8 + T cell response. Conclusions: Understanding why CD40-activated B cell immunization is defective for the generation of memory T cells and gaining new insights about signals that should be provided by APCs are key steps before translating the use of CD40-B cel

    Extrinsically derived TNF is primarily responsible for limiting antiviral CD8+ T cell response magnitude.

    Get PDF
    TNF is a pro-inflammatory cytokine produced by both lymphoid and non-lymphoid cells. As a consequence of the widespread expression of its receptors (TNFR1 and 2), TNF plays a role in many important biological processes. In the context of influenza A virus (IAV) infection, TNF has variably been implicated in mediating immunopathology as well as suppression of the immune response. Although a number of cell types are able to produce TNF, the ability of CD8+ T cells to produce TNF following viral infection is a hallmark of their effector function. As such, the regulation and role of CD8+ T cell-derived TNF following viral infection is of great interest. Here, we show that the biphasic production of TNF by CD8+ T cells following in vitro stimulation corresponds to distinct patterns of epigenetic modifications. Further, we show that a global loss of TNF during IAV infection results in an augmentation of the peripheral virus-specific CD8+ T cell response. Subsequent adoptive transfer experiments demonstrated that this attenuation of the CD8+ T cell response was largely, but not exclusively, conferred by extrinsic TNF, with intrinsically-derived TNF making only modest contributions. In conclusion, TNF exerts an immunoregulatory role on CD8+ T cell responses following IAV infection, an effect that is largely mediated by extrinsically-derived TNF
    corecore