58 research outputs found

    Efficient generation of few-cycle pulses beyond 10 μm from an optical parametric amplifier pumped by a 1-µm laser system

    Get PDF
    Nonlinear vibrational spectroscopy profits from broadband sources emitting in the molecular fingerprint region. Yet, broadband lasers operating at wavelengths above 7 μm have been lacking, while traditional cascaded parametric frequency down-conversion schemes suffer from exceedingly low conversion efficiencies. Here we present efficient, direct frequency down-conversion of femtosecond 100-kHz, 1.03-μm pulses to the mid-infrared from 7.5 to 13.3 μm in a supercontinuum-seeded, tunable, single-stage optical parametric amplifier based on the wide-bandgap material Cd0.65Hg0.35Ga2S4. The amplifier delivers near transform-limited, few-cycle pulses with an average power > 30 mW at center wavelengths between 8.8 and 10.6 μm, at conversion efficiencies far surpassing that of optical parametric amplification followed by difference-frequency generation or intrapulse difference-frequency generation. The pulse duration at 10.6 μm is 101 fs corresponding to 2.9 optical cycles with a spectral coverage of 760–1160 cm−1. CdxHg1−xGa2S4 is an attractive alternative to LiGaS2 and BaGa4S7 in small-scale, Yb-laser-pumped, few-cycle mid-infrared optical parametric amplifiers and offers a much higher nonlinear figure of merit compared to those materials. Leveraging the inherent spatial variation of composition in CdxHg1−xGa2S4, an approach is proposed to give access to a significant fraction of the molecular fingerprint region using a single crystal at a fixed phase matching angle.Peer Reviewe

    Structural and vibrational study of pseudocubic CdIn2Se4 under compression

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp5077565We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se4 transforms into a spinel structure which, according to calculations, is energetically competitive with the initial pseudocubic phase. The phase behavior of this compound under compression and the structural and compressibility trends in AB(2)Se(4) selenides are discussed.This study was supported by the Spanish government MEC under Grant Nos: MAT2013-46649-C4-3-P, MAT2013-46649-C4-2-P, MAT2010-21270-C04-03/04, and CTQ2009-14596-C02-01, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045) and by Generalitat Valenciana (GVA-ACOMP-2013-1012). A.M. and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster, and also to S. Munoz-Rodriguez for providing a data-parsing application. J.A.S. acknowledges Juan de la Cierva fellowship program for financial support.Santamaría Pérez, D.; Gomis, O.; Pereira, ALJ.; Vilaplana Cerda, RI.; Popescu, C.; Sans Tresserras, JÁ.; Manjón Herrera, FJ.... (2014). Structural and vibrational study of pseudocubic CdIn2Se4 under compression. Journal of Physical Chemistry C. 118(46):26987-26999. https://doi.org/10.1021/jp5077565S26987269991184

    Narrow-bandwidth mid-infrared optical parametric generator based on HgGa2S4 crystal pumped by 16-ps pulses at 1064 nm

    No full text
    Pumping with 16-ps long, 15 μJ pulses, we report on extremely wide tuning range in the mid-IR and narrow-band, close to Fourier limit, operation of an injection-seeded HGS OPG
    corecore