12 research outputs found

    In Planta Variation of Volatile Biosynthesis: An Alternative Biosynthetic Route to the Formation of the Pathogen-Induced Volatile Homoterpene DMNT via Triterpene Degradation in Arabidopsis Roots

    Get PDF
    Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5- to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C(16)-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C(30) triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants

    Symmetryâ Directed Selfâ Assembly of a Tetrahedral Protein Cage Mediated by de Novoâ Designed Coiled Coils

    Full text link
    The organization of proteins into new hierarchical forms is an important challenge in synthetic biology. However, engineering new interactions between protein subunits is technically challenging and typically requires extensive redesign of proteinâ protein interfaces. We have developed a conceptually simple approach, based on symmetry principles, that uses short coiledâ coil domains to assemble proteins into higherâ order structures. Here, we demonstrate the assembly of a trimeric enzyme into a wellâ defined tetrahedral cage. This was achieved by genetically fusing a trimeric coiledâ coil domain to its C terminus through a flexible polyglycine linker sequence. The linker length and coiledâ coil strength were the only parameters that needed to be optimized to obtain a high yield of correctly assembled protein cages.Geometry lesson: A modular approach for assembling proteins into largeâ scale geometric structures was developed in which coiledâ coil domains acted as â twist tiesâ to facilitate assembly. The geometry of the cage was specified primarily by the rotational symmetries of the coiled coil and building block protein and was largely independent of protein structural details.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138862/1/cbic201700406_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138862/2/cbic201700406.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138862/3/cbic201700406-sup-0001-misc_information.pd

    C4a-Hydroperoxyflavin Formation in <i>N</i>‑Hydroxylating Flavin Monooxygenases Is Mediated by the 2′-OH of the Nicotinamide Ribose of NADP<sup>+</sup>

    No full text
    Flavin-dependent monooxygenases must stabilize a C4a-hydroperoxyflavin intermediate to hydroxylate their respective substrates. Formation and decay of the C4a-hydroperoxyflavin were monitored under rapid reaction kinetic conditions in SidA, an <i>N</i>-hydroxylating monooxygenase involved in siderophore biosynthesis. Solvent kinetic isotope effect studies of flavin oxidation indicate that both hydrogen peroxide elimination and water elimination occur via abstraction of hydrogen from the N5 of the flavin. Kinetic isotope effect and density functional theory results are consistent with the transfer of a proton from the 2′-OH of the nicotinamide ribose of nicotinamide adenine dinucleotide phosphate (NADP<sup>+</sup>) to the C4a-peroxyflavin to form the C4a-hydroperoxyflavin. This represents a novel role for NADP<sup>+</sup> in the reaction of flavin-dependent enzymes

    Mechanism of <i>N</i>‑Hydroxylation Catalyzed by Flavin-Dependent Monooxygenases

    No full text
    Aspergillus fumigatus siderophore (SidA), a member of class B flavin-dependent monooxygenases, was selected as a model system to investigate the hydroxylation mechanism of heteroatom-containing molecules by this group of enzymes. SidA selectively hydroxylates ornithine to produce <i>N</i><sup>5</sup>-hydroxyornithine. However, SidA is also able to hydroxylate lysine with lower efficiency. In this study, the hydroxylation mechanism and substrate selectivity of SidA were systematically studied using DFT calculations. The data show that the hydroxylation reaction is initiated by homolytic cleavage of the O–O bond in the <i>C</i><sup>4a</sup>-hydroperoxyflavin intermediate, resulting in the formation of an internal hydrogen-bonded hydroxyl radical (HO<sup>•</sup>). As the HO<sup>•</sup> moves to the ornithine N<sup>5</sup> atom, it rotates and donates a hydrogen atom to form the <i>C</i><sup>4a</sup>-hydroxyflavin. Oxygen atom transfer yields an aminoxide, which is subsequently converted to hydroxylamine via water-mediated proton shuttling, with the water molecule originating from dehydration of the <i>C</i><sup>4a</sup>-hydroxyflavin. The selectivity of SidA for ornithine is predicted to be the result of the lower energy barrier for oxidation of ornithine relative to that of lysine (16 vs 24 kcal/mol, respectively), which is due to the weaker stabilizing hydrogen bond between the incipient HO<sup>•</sup> and O3′ of the ribose ring of NADP<sup>+</sup> in the transition state for lysine

    Engineered Surface-Immobilized Enzyme that Retains High Levels of Catalytic Activity in Air

    No full text
    In the absence of aqueous buffer, most enzymes retain little or no activity; however, “water-free” enzymes would have many diverse applications. Here, we describe the chemically precise immobilization of an enzyme on an engineered surface designed to support catalytic activity in air at ambient humidity. Covalent immobilization of haloalkane dehalogenase on a surface support displaying poly­(sorbitol methacrylate) chains resulted in ∼40-fold increase in activity over lyophilized enzyme powders for the gas-phase dehalogenation of 1-bromopropane. The activity of the immobilized enzyme in air approaches 25% of the activity obtained in buffer for the immobilized enzyme. Poly­(sorbitol methacrylate) appears to enhance activity by replacing protein–water interactions, thereby preserving the protein structure
    corecore