57 research outputs found

    The induction of heme oxygenase 1 decreases contractility in human internal thoracic artery and radial artery grafts

    Get PDF
    ObjectiveSpasm remains a potential problem encountered during the use of arterial grafts in coronary artery bypass surgery. Heme oxygenase plays a role in the control of arterial vasoreactivity. Heme oxygenase exists in 2 constitutive isoforms (heme oxygenase 2 and 3) and an inducible isoform (heme oxygenase 1). The aim of our study was to induce heme oxygenase 1 by using hemin in human internal thoracic and radial arteries and to evaluate the effect of this induction on the contractility of these arterial grafts.MethodsSegments of human arterial grafts obtained from patients undergoing isolated coronary artery bypass surgery were incubated in organ chambers for 4 hours in the presence of 10−4 mol/L hemin. Concentration-response curves to norepinephrine were obtained in control and hemin-treated arterial rings. Heme oxygenase 1 expression was evaluated by using enzyme-linked immunosorbent assays and immunohistochemical staining.ResultsThe contractility of the arterial rings to norepinephrine was significantly reduced after incubation with hemin. Zinc protoporphyrin (an inhibitor of heme oxygenase) reversed the effect of hemin, whereas the inhibitor of nitric oxide synthase had no effect. The inhibitor of soluble guanylate cyclase blocked the decrease in contractility induced by hemin. Immunohistochemical staining revealed a large expression of heme oxygenase 1 in all vascular layers of hemin-treated internal thoracic artery and radial artery rings. Enzyme-linked immunosorbent assay studies showed a significant increase in heme oxygenase 1 levels in hemin-treated internal thoracic artery and radial artery rings.ConclusionHemin caused in vitro induction of heme oxygenase 1 in human internal thoracic artery and radial artery grafts. This induction resulted in a reduced contractility to norepinephrine, partially through the cyclic guanosine monophosphate–dependent pathway. This effect was independent from nitric oxide synthesis

    ETUDE DU REMODELAGE DE LA MATRICE EXTRACELLULAIRE AU COURS DU PROCESSUS VARIQUEUX

    No full text
    PARIS-BIUSJ-Physique recherche (751052113) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocSudocFranceF

    Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm

    No full text
    Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing the h-angiotensinogen and h-renin genes (AR) subjected to either a control, or a high-salt diet plus a treatment with a NO-synthase inhibitor, N-ω-nitro-L-arginine-methyl-ester (L-NAME; BLSL and ARSL). BLSL showed a moderate increase in blood pressure, while ARSL became severely hypertensive. Seventy-five percent of ARSL developed aortic aneurysms, characterized by major histo-morphological changes and associated with an increase in NADP(H) oxidase-2 (NOX2) expression. Contractile responses (KCl, norepinephrine, U-46619) were similar in the four groups of mice, and relaxations were not affected in BLSL and AR. However, in ARSL, endothelium-dependent relaxations (acetylcholine, UK-14304) were significantly reduced, and this dysfunction was similar in aortae without or with aneurysms. The endothelial impairment was unaffected by catalase, superoxide-dismutase mimetic, radical scavengers, cyclooxygenase inhibition, or TP-receptor blockade and could not be attributed to sGC oxidation. Thus, ARSL is a severe hypertension model developing aortic aneurysm. A vascular dysfunction, involving both endothelial (reduced role of NO) and smooth muscle cells, precedes aneurysms formation and, paradoxically, does not appear to involve oxidative stress
    corecore