4,219 research outputs found

    Electronic structure of copper intercalated transition metal dichalcogenides: First-principles calculations

    Full text link
    We report first principles calculations, within density functional theory, of copper intercalated titanium diselenides, CuxTiSe2, for values of x ranging from 0 to 0.11. The effect of intercalation on the energy bands and densities of states of the host material is studied in order to better understand the cause of the superconductivity that was recently observed in these structures. We find that charge transfer from the copper atoms to the metal dichalcogenide host layers causes a gradual reduction in the number of holes in the otherwise semi-metallic pristine TiSe2, thus suppressing the charge density wave transition at low temperatures, and a corresponding increase in the density of states at the Fermi level. These effects are probably what drive the superconducting transition in the intercalated systems.Comment: 8 pages, 6 figure

    First-principles Calculations of Engineered Surface Spin Structures

    Full text link
    The engineered spin structures recently built and measured in scanning tunneling microscope experiments are calculated using density functional theory. By determining the precise local structure around the surface impurities, we find the Mn atoms can form molecular structures with the binding surface, behaving like surface molecular magnets. The spin structures are confirmed to be antiferromagnetic, and the exchange couplings are calculated within 8% of the experimental values simply by collinear-spin GGA+U calculations. We can also explain why the exchange couplings significantly change with different impurity binding sites from the determined local structure. The bond polarity is studied by calculating the atomic charges with and without the Mn adatoms

    Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals

    Full text link
    There is a number of explicit kinetic energy density functionals for non-interacting electron systems that are obtained in terms of the electron density and its derivatives. These semilocal functionals have been widely used in the literature. In this work we present a comparative study of the kinetic energy density of these semilocal functionals, stressing the importance of the local behavior to assess the quality of the functionals. We propose a quality factor that measures the local differences between the usual orbital-based kinetic energy density distributions and the approximated ones, allowing to ensure if the good results obtained for the total kinetic energies with these semilocal functionals are due to their correct local performance or to error cancellations. We have also included contributions coming from the laplacian of the electron density to work with an infinite set of kinetic energy densities. For all the functionals but one we have found that their success in the evaluation of the total kinetic energy are due to global error cancellations, whereas the local behavior of their kinetic energy density becomes worse than that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure

    Electronic band structure, Fermi surface, and elastic properties of new 4.2K superconductor SrPtAs from first-principles calculations

    Full text link
    The hexagonal phase SrPtAs (s.g. P6/mmm; #194) with a honeycomb lattice structure very recently was declared as a new low-temperature (TC ~ 4.2K) superconductor. Here by means of first-principles calculations the optimized structural parameters, electronic bands, Fermi surface, total and partial densities of states, inter-atomic bonding picture, independent elastic constants, bulk and shear moduli for SrPtAs were obtained for the first time and analyzed in comparison with the related layered superconductor SrPt2As2.Comment: 8 pages, 4 figure

    Deciphering the Curly Arrow Representation and Electron Flow for the 1,3-Dipolar Rearrangement between Acetonitrile Oxide and (1S,2R,4S)‑2-Cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yl Acetate Derivatives

    Get PDF
    This study is focused on describing the molecular mechanism beyond the molecular picture provided by the evolution of molecular orbitals, valence bond structures along the reaction progress, or conceptual density functional theory. Using bonding evolution theory (BET) analysis, we have deciphered the mechanism of the 1,3-dipolar rearrangement between acetonitrile oxide and (1S,2R,4S)-2-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yl acetate derivatives. The BET study revealed that the formation of the C−C bond takes place via a usual sharing model before the O−C one that is also formed in the halogenated species through a not very usual sharing model. The mechanism includes depopulation of the electron density at the N−C triple bond and creation of the V(N) and V(C) monosynaptic basins, depopulation of the former C−C double bond with the creation of V(C,C) basins, and final formation of the V(O,C) basin associated with the O−C bond. The topological changes along the reaction pathway take place in a highly synchronous way. BET provides a convenient quantitative method for deriving curly arrows and electron flow representation to unravel molecular mechanisms

    Identification of hydrogen bonds using quantum electrodynamics

    Get PDF
    A method for the identification of hydrogen bonds was investigated from the viewpoint of the stress tensor density proposed by Tachibana and following other works in this field. Hydrogen bonds are known to exhibit common features with ionic and covalent bonds. In quantum electrodynamics, the covalent bond has been demonstrated to display a spindle structure of the stress tensor density. Importantly, this spindle structure is also seen in the hydrogen bond, although the covalency is considerably weaker than in a typical covalent bond. Distinguishing it from the ionic bond is most imperative for the identification of the hydrogen bond. In the present study, the directionality of the hydrogen bond is investigated as the ionic bond is nearly isotropic, while the hydrogen bond exhibits the directionality. It was demonstrated that the hydrogen bond can be distinguished from the ionic bond using the angle dependence of the largest eigenvalue of the stress tensor density

    Large Electronic Anisotropy and Enhanced Chemical Activity of Highly Rippled Phosphorene

    Full text link
    We investigate the electronic structure and chemical activity of rippled phosphorene induced by large compressive strains via first-principles calculation. It is found that phosphorene is extraordinarily bendable, enabling the accommodation of ripples with large curvatures. Such highly rippled phosphorene shows a strong anisotropy in electronic properties. For ripples along the armchair direction, the band gap changes from 0.84 to 0.51 eV for the compressive strain up to -20% and further compression shows no significant effect, for ripples along the zigzag direction, semiconductor to metal transition occurs. Within the rippled phosphorene, the local electronic properties, such as the modulated band gap and the alignments of frontier orbitals, are found to be highly spatially dependent, which may be used for modulating the injection and confinement of carriers for optical and photovoltaic applications. The examination of the interaction of a physisorbed NO molecule with the rippled phosphorene under different compressive strains shows that the chemical activities of the phosphorene are significantly enhanced at the top and bottom peaks of the ripples, indicated by the enhanced adsorption and charge transfer between them. All these features can be ascribed to the effect of curvatures, which modifies the orbital coupling between atoms at the ripple peaks

    Band structure of (Sr3Sc2O5)Fe2As2 as a possible parent phase for new FeAs superconductors

    Full text link
    By means of first-principles FLAPW-GGA calculations, we have investigated the electronic properties of the newly synthesized layered phase - (Sr3Sc2O5)Fe2As2. The electronic bands, density of states and Fermi surface have been evaluated. The resembling of our data for (Sr3Sc2O5)Fe2As2 with band structure pictures of known FeAs superconducting materials may be considered as the theoretical background specifying the possibility for (Sr3Sc2O5)Fe2As2 to become a parent phase for new FeAs superconductors.Comment: 10 pages, 4 figures, 3 table

    A surprisingly simple electrostatic model explains bent vs. linear structures in M+-RG2 species (M = group 1 metal, Li–Fr; RG = rare gas, He–Rn)

    Get PDF
    It is found that a simple electrostatic model involving competition between the attractive dispersive interaction and induced-dipole repulsion between the two RG atoms performs extremely well in rationalizing the M+-RG2 geometries, where M = Group 1 metal and RG = rare gas. The Li+-RG2 and Na+-RG2 complexes have previously been found to exhibit quasilinear or linear minimum energy geometries, with the Na+-RG2 complexes having an additional bent local minimum [A. Andrejeva, A. M. Gardner, J. B. Graneek, R. J. Plowright, W. H. Breckenridge and T. G. Wright, J. Phys. Chem. A, 2013, 117, 13578]. In the present work, the geometries for M = K–Fr are found to be bent. A simple electrostatic model explains these conclusions and is able to account almost quantitatively for the binding energy of the second RG atom, as well as the form of the angular potential, for all thirty six titular species. Additionally, results of population analyses are presented together with orbital contour plots; combined with the success of the electrostatic model, the expectation that these complexes are all physically bound is confirmed

    Comparison Between Hydrogen and Halogen Bonds in Complexes of 6-OX-Fulvene with Pnicogen and Chalcogen Electron Donors

    Get PDF
    Quantum chemical calculations are applied to complexes of 6‐OX‐fulvene (X=H, Cl, Br, I) with ZH3/H2Y (Z=N, P, As, Sb; Y=O, S, Se, Te) to study the competition between the hydrogen bond and the halogen bond. The H‐bond weakens as the base atom grows in size and the associated negative electrostatic potential on the Lewis base atom diminishes. The pattern for the halogen bonds is more complicated. In most cases, the halogen bond is stronger for the heavier halogen atom, and pnicogen electron donors are more strongly bound than chalcogen. Halogen bonds to chalcogen atoms strengthen in the order
    corecore