16,751 research outputs found

    Electronic structure of copper intercalated transition metal dichalcogenides: First-principles calculations

    Full text link
    We report first principles calculations, within density functional theory, of copper intercalated titanium diselenides, CuxTiSe2, for values of x ranging from 0 to 0.11. The effect of intercalation on the energy bands and densities of states of the host material is studied in order to better understand the cause of the superconductivity that was recently observed in these structures. We find that charge transfer from the copper atoms to the metal dichalcogenide host layers causes a gradual reduction in the number of holes in the otherwise semi-metallic pristine TiSe2, thus suppressing the charge density wave transition at low temperatures, and a corresponding increase in the density of states at the Fermi level. These effects are probably what drive the superconducting transition in the intercalated systems.Comment: 8 pages, 6 figure

    A Computational Method for the Rate Estimation of Evolutionary Transpositions

    Full text link
    Genome rearrangements are evolutionary events that shuffle genomic architectures. Most frequent genome rearrangements are reversals, translocations, fusions, and fissions. While there are some more complex genome rearrangements such as transpositions, they are rarely observed and believed to constitute only a small fraction of genome rearrangements happening in the course of evolution. The analysis of transpositions is further obfuscated by intractability of the underlying computational problems. We propose a computational method for estimating the rate of transpositions in evolutionary scenarios between genomes. We applied our method to a set of mammalian genomes and estimated the transpositions rate in mammalian evolution to be around 0.26.Comment: Proceedings of the 3rd International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO), 2015. (to appear

    Chromogranin A in the pancreatic islet

    Get PDF
    Chromogranin A (CGA) is the major soluble protein within secretory vesicles of chromaffin cells. A polyclonal antiserum was raised against bovine CGA and characterized in two-dimensional immunoblots. Cellular and subcellular distribution of CGA in bovine pancreatic islet was investigated by immunocytochemistry. At the light microscopic level, CGA-like immunoreactivity was found in the same cells that react with antibodies against insulin, glucagon, and somatostatin. A minority of cells containing pancreatic polypeptide also showed faint immunostaining. At the ultrastructural level (protein A-gold technique), CGA-like immunoreactivity was confined exclusively to the secretory vesicles. Whereas the hormones were localized mainly in the central part of the secretory vesicles, CGA was present predominantly in the periphery. These findings indicate that a CGA-like protein is a regular constituent of the matrix of secretory vesicles in pancreatic endocrine cells

    Other‐Sacrificing Options

    Get PDF
    I argue that you can be permitted to discount the interests of your adversaries even though doing so would be impartially suboptimal. This means that, in addition to the kinds of moral options that the literature traditionally recognises, there exist what I call other-sacrificing options. I explore the idea that you cannot discount the interests of your adversaries as much as you can favour the interests of your intimates; if this is correct, then there is an asymmetry between negative partiality toward your adversaries and positive partiality toward your intimates

    Stabilization of the high-spin state of Co3+^{3+} in LaCo1x_{1-x}Rhx_{x}O3_3

    Full text link
    The rhodium doping in the LaCo1x_{1-x}Rhx_{x}O3_3 perovskite series (x=0.020.5x=0.02-0.5) has been studied by X-ray diffraction, electric transport and magnetization measurements, complemented by electronic structure GGA+U calculations in supercell for different concentration regimes. No charge transfer between Co3+^{3+} and Rh3+^{3+} is evidenced. The diamagnetic ground state of LaCoO3_3, based on Co3+^{3+} in low-spin (LS) state, is disturbed even by a small doping of Rh. The driving force is the elastic energy connected with incorporation of a large Rh3+^{3+} cation into the matrix of small LS Co3+^{3+} cations, which is relaxed by formation of large Co3+^{3+} in high-spin (HS) state in the next-nearest sites to the inserted Rh atom. With increasing temperature, the population of Co3+^{3+} in HS state increases through thermal excitation, and a saturated phase is obtained close to room temperature, consisting of a nearest-neighbor correlation of small (LS Co3+^{3+}) and large (HS Co3+^{3+} and LS Rh3+^{3+}) cations in a kind of double perovskite structure. The stabilizing role of elastic and electronic energy contributions is demonstrated in supercell calculations for dilute Rh concentration compared to other dopants with various trivalent ionic radius.Comment: 8 pages, 8 figure

    Treatment of hyper-granulated limb wounds in horses

    Get PDF
    This study was performed to investigate the different methods of treating hyper granulation tissue on experimentally induced wounds in equine limbs. Wounds were induced by removal of a skin patch and subcutaneous tissue for about 5-7 cm width and 6-8 cm in length from the dorsal and lateral aspect of the fore and hind limbs below the carpal and tarsal joints. The wounds were left open without treatment and the animals were trained 2-2.5 hours every day for about 3-5 weeks until hyper granulation tissue was developed. The schedule for the treatment of hyper granulation was divided into five groups each contained eight wounds of hyper granulation tissue; each main group was divided into two subgroups. The subgroups of first, second, third, fourth and fifth groups were treated by the following schedules: bandage alone; copper sulphate ointment 10%; silver nitrate ointment 2%; red mercury ointment 11%; and laser therapy (at a total dose of 9.72 Joule / cm2) respectively. While the second subgroups were treated by surgical resection of the hyper granulation tissue, followed by the same treatments applied on the first subgroup. The bandage for all experimental groups was changed every 48 hours until healing was occurred. The clinical and histological observation of the first group revealed that the healing take long period comparing with other groups. The mean of wound healing were 65 days in non surgical removal of hyper granulation tissue subgroup, while 57 days in surgical removed of hyper granulation tissue subgroup. The results of the second, third, fourth groups revealed that the caustic material especially red mercury has a role in healing processes through depressing the hyper granulation tissue. The mean of wound healing of the second group was 42.25 days in non surgical removal of hyper granulation tissue subgroup while 37.25 days in surgically removed hyper granulation tissue subgroup. In the third group the mean of wound healing was 45.75 days in non surgical removal of hyper granulation tissue subgroup while 44.75 days in surgically removed hyper granulation tissue subgroup. While in the fourth group the mean of wound healing was 39 days in non surgical removal of hyper granulation tissue subgroup while 36 days in surgically removed hyper granulation tissue subgroup. In the fifth group the clinical and histological observation revealed that the using of laser lead to reduce the period for wound healing significantly comparing with other groups. The mean of wound healing was 25 days in non surgical removal of hyper granulation tissue subgroup while 20 days in surgically removed hyper granulation tissue subgroup, so that the laser was the best in this study and the using of surgical removal is better than of non surgical removal
    corecore