research

Stabilization of the high-spin state of Co3+^{3+} in LaCo1x_{1-x}Rhx_{x}O3_3

Abstract

The rhodium doping in the LaCo1x_{1-x}Rhx_{x}O3_3 perovskite series (x=0.020.5x=0.02-0.5) has been studied by X-ray diffraction, electric transport and magnetization measurements, complemented by electronic structure GGA+U calculations in supercell for different concentration regimes. No charge transfer between Co3+^{3+} and Rh3+^{3+} is evidenced. The diamagnetic ground state of LaCoO3_3, based on Co3+^{3+} in low-spin (LS) state, is disturbed even by a small doping of Rh. The driving force is the elastic energy connected with incorporation of a large Rh3+^{3+} cation into the matrix of small LS Co3+^{3+} cations, which is relaxed by formation of large Co3+^{3+} in high-spin (HS) state in the next-nearest sites to the inserted Rh atom. With increasing temperature, the population of Co3+^{3+} in HS state increases through thermal excitation, and a saturated phase is obtained close to room temperature, consisting of a nearest-neighbor correlation of small (LS Co3+^{3+}) and large (HS Co3+^{3+} and LS Rh3+^{3+}) cations in a kind of double perovskite structure. The stabilizing role of elastic and electronic energy contributions is demonstrated in supercell calculations for dilute Rh concentration compared to other dopants with various trivalent ionic radius.Comment: 8 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions