
GARF: Towards Self-optimised Random Forests

Mohamed Bader-El-Den and Mohamed Gaber

School of Computing, University of Portsmouth,
Portsmouth PO1 2AW, Hampshire, UK

Abstract. Ensemble learning is a machine learning approach that utilises
a number of classifiers to contribute via voting to identifying the class
label for any unlabelled instances. Random Forests RF is an ensemble
classification approach that has proved its high accuracy and superior-
ity. However, most of the commonly used selection methods are static.
Motivated by the idea of having self-optimised RF capable of dynami-
cal changing the trees in the forest. This study uses a genetic algorithm
GA approach to further enhance the accuracy of RF. The approach is
termed as Genetic Algorithm based RF (GARF ). Our extensive exper-
imental study has proved that RF performance is be boosted using the
GA approach.

Keywords: Random Forest, Genetic Algorithms, Ensemble Classification

1 Introduction

Ensemble classification is an established machine learning approach to boost the
performance of classification techniques. It is based on the process of building
a number of classifiers, and then collectively using them to identify unlabelled
instances. Two widely used ensemble approaches could be identified, namely,
boosting and bagging. Boosting is an incremental process of building a sequence
of classifiers, where each classifier works on the incorrectly classified instances
of the previous one in the sequence. AdaBoost [8] is the representative of this
class of techniques. However, AdaBoost is pruned to overfitting. The other class
of ensemble approaches is the Bootstrap Aggregating (Bagging) [5]. Bagging
involves building each classifier in the ensemble using a randomly drawn sample
of the data, having each classifier giving an equal vote when labelling unlabelled
instances. Bagging is known to be more robust than boosting against model
overfitting. The main representative of bagging is Random Forests (RF) [6]. In
RF , a number of trees are generated, having each tree built using randomly
drawn instances from the data set. Randomisation is also applied when selecting
the best node to split on for all the trees. Typically this is an input parameter
which is equal to

√
F , where F is the number of features in the data set. More

details about RF are presented in Section 2.
Genetic algorithm [10]is an optimisation approach that belongs to the family

of stochastic optimisation. It has long been used successfully in many applica-
tions .The process of applying genetic algorithm goes through four main steps,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29583167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Lecture Notes in Computer Science: Authors’ Instructions

initialisation, selection, reproduction and termination. In the initialisation step,
an initial population of individual solutions is generated. Using a fitness func-
tion, individuals of good performance are used to produce a new generation. This
process is the selection step. The reproduction step uses mainly two techniques,
crossover and mutation, to produce a new generation. The reproduction process
continues until a termination condition is reached.

Motivated by the observation that a number of RFs could be drawn from a
larger RF forming an initial population of individuals, genetic algorithms could
be an ideal optimisation solution to build a more accurate ensemble. It is worth
noting that this observation also applies to other ensemble approaches. Thus,
our hypothesis in conducting this research could be stated as follows: genetic
algorithm is able to further enhance the performance of ensemble classification.

In this paper, we have proposed, developed and empirically evaluated a novel
approach to optimising RFs boosting their performance. Our approach is termed
Genetic Algorithm based RFs (GARF ). The GARF approach starts by gener-

ating a large RF of N decision trees, forming a vector
−→
RF . Drawing randomly

from
−→
RF a number of vectors each denoted as

−→
rfi, where the number of trees

in
−→
rfi is denoted as ni ≤ N , i = 1..S, and S is the number of RFs . In genetic

algorithms terminology, S is the size of the population. This initial population
is then evolved through a number of generations, with the fitness function for
each individual being its classification accuracy.

The paper is organised as follows. Section 2 provides necessary background
about RFs and genetic algorithm; the main constructs of our GARF technique.
Our proposed approach GARF to boost the performance of RFs is detailed
in Section 3. Extensive experimental study validating GARF is presented in
Section 4. A discussion of related work is given in Section 2.3. Finally, the paper
is concluded with a short summary and pointer to future developments in Section
5.

2 Background

As we build our GARF technique based on RFs and genetic algorithm, the
following subsections provide necessary background on the two methods.

2.1 Random Forests

Two broad categories of techniques could be identified in machine learning,
supervised and unsupervised. Supervised techniques are also widely known as
classification attempt to identify the value of an attribute, known as the class
attribute, based on the values of the other attributes in the same instance or
record of data. This identification is based on learning from historical data. The
attributes other than the class are known as predictors. Thus, if the value of
the class label is y, and the values of the predictors form the vector x, then
y = f(x). Any classification technique attempts to find f̂(x) that approximates
the function f(x).



Lecture Notes in Computer Science: Authors’ Instructions 3

The notion of using a set of classifiers to identify unlabelled instances is
known as ensemble learning. Boosting and bagging are the two known successful
approaches to ensemble learning. RFs belongs to the bagging approach. Bagging
(Bootstrap Aggregating) has been proposed by Breiman in [5]. It is based on
generating a number of replicas from the training data by uniformly sampling
the instances with replacement. This sampling approach is known as Bootstrap.
It allows duplicate instances to appear in the same replica, and also allows some
instances to be left out. Statistically for a large replica that has the number of
instances equal to the size of the data set, 63.2% of the instances do appear at
least once in the replica. Having a number of replicas, each denoted as r out
of the training data, a classifier c(r) is built using the sampled instances in r.

The classification is done via voting among a vector of classifiers
−−→
c(r) that have

been built using the corresponding vector of replicas −→r . A common performance
evaluation approach in bagging is to use out of bag method. This is based on
evaluating each instance using those classifiers in the ensemble that did not
use that instance for training. This means that not all the classifiers are used
together in testing.

Bagging has been applied successfully to an ensemble technique, termed RFs.
In addition to the Bootstrap sampling, randomisation over the feature space is
also used. The technique is based on building a number of decision tree classifiers,
having each tree built from one replica out of the training data. However, when
splitting the nodes of the decision tree, only a subset of all the features is used.
Assuming that the number of features in the data set is F , the standard setting
for the random features to be used at each split is M =

√
F . Breiman has

used Gini index as the goodness measure to split the attributes on. Gini index
has been introduced by Breiman et al [7] in building the Classification And
Regression Trees CART technique. However, it has been first introduced by the
Italian statistician Corrado Gini in 1912. The index is a function that could be
used to measure the impurity of the data, i.e., how uncertain we are if an event
will occur. In classification, this event would be the determination of the class
label. The Gini impurity function in its original form is calculated as follows.

Gini(t) = 1−
w∑
i=1

P (Ci|t)2 (1)

where t is a condition, w the number of classes in the data set, and Ci is the
ith class label in the data set.

By removing the condition t from the original form of the previous equation,
we can calculate the level of impurity for any data set before splitting as follows.

Gini(Class) = 1−
w∑
i=1

P (Ci)
2 (2)

The Gini index of any attribute A can then be calculated as follows.

GiniIndex(A) = Gini(Class)−
m∑
j=1

P (aj).Gini(A = aj) (3)



4 Lecture Notes in Computer Science: Authors’ Instructions

where m is the number of values for the attribute A.
The attribute with a higher Gini index is the one chosen to be split on. It

is worth noting that CART uses binary splits. Thus, for those attributes with
m > 2, a preprocessing step is required to find the best was to combine the
different values of the attribute to result in a binary split.

2.2 Genetic Algorithm

GA is a well established evolutionary approach. Basic details about GA can be
found in [9] In an ordinary GA, the chromosome represents an encoded solution.
For some problems, the direct encoding of a solution in a GA’s chromosome
results in complex and large chromosomes that may need complex repairs after
the application of the GA’s operators. In contrast, [12] introduced what could
be called as indirect encoding or Indirect GAs (IGAs), where each gene in the
chromosome represents a heuristic – this could be seen as rule of thumb, an
educated guess or small rules – instead of representing part of the solution. In
an indirect GA, the chromosome which is known as Heuristic Chromosome (HC)
may be much more compact and robust, since it represents the heuristics that
will be used in order to get a solution.

The most common form of HC, is one where the HC consists of a number of
genes and each of these genes represents the ID of a heuristic. In order to build
a solution, the heuristics in an HC are called one after the other or in parallel
based on the problem and what exactly the chromosome represents. One of the
main differences between different HC approaches lies in structure of the HC
and what exactly each gene represents.

The approach adopted in this paper is similar to the IGA approach, a single
random tree could be considered as a heuristic. Each gene in the chromosome
represents a pointer to a random tree classifier, and the chromosome as a whole
represents an ensemble classifier (forest). In order to get a solution (classification)
of a given instance, the genes in the chromosome are used to evaluate the instance
as detailed in section 3.

2.3 Related Work

Genetic algorithm has been applied in machine learning and data mining ex-
tensively. The main application is the use of genetic algorithm in the feature
selection problem. An early survey on this topic can be found in [11]. How-
ever, the relevant work to the research reported in this paper is detailed in the
following.

Robnik-Sikonja [13] has proposed possible extensions to RFs that have proved
to boost the accuracy of the original techniques presented in Section 2. The mo-
tivation behind these extensions is to decrease the correlation among the trees
in the RF. As the original technique proposed by [6] uses Gini index for finding

the best split among the randomised vector of attributes
−→
FM . In an attempt

to decrease the dependency among attributes, Robnik-Sikonja has used ReliefF



Lecture Notes in Computer Science: Authors’ Instructions 5

[14] as a measure of the quality of the attributes. This extension has not proved
to have a good performance on real data sets. A combination of measures for
the quality of attributes has been used to decide the split, having each fifth
tree in the forest uses a different measure. This method has proved to boost the
performance of the RF, but not significantly. The other approach proposed by
Robnik-Sikonja was the use of weighted voting among the trees using similarity
of the instances with regards to their performance on the individual trees. This
method always has proven to boost the performance of the input forest, and
very competitive with other state-of-the-art methods.

Sylvester and Chawla [15] have proposed the EVEN (EVolutionary ENsem-
bles). They have also attempted to use weighted voting among a set of homoge-
neous or heterogeneous classifiers. The EVEN system uses each of the classifier’s
performance over a validation set of data to weight the tree. Experimental valida-
tion has proved that EVEN can outperform the unweighted ensemble. In a more
recent work, Abdulsalam and Skillicorn [2] have used Hoeffding trees to build a
window of RFs to tackle the concept drift problem when mining streaming data.

3 GARF

GARF uses variable size chromosomes. Each chromosome (individual) in the
population represents a forest. Each of the genes in the chromosome represents a
random tree. Traditional genetic operators are employed by the proposed GARF
for the crossover; a standard single point crossover operator is adopted. Two
modes of operation for the crossover operator have been developed and tested. In
the first mode all the repeated genes that could occur because of the crossover in
the new individuals are removed. This to make sure that the each evolved forest
has no repeated trees. The second mode does not make this extra check and
allows the repetition of the trees in the offspring. For the mutation, a standard
uniform mutation operator is employed, where the operator replaces a randomly
chosen tree/gene with another randomly selected tree from the input trees forest
that does not already exist in the forest/individual.

Each dataset is divided into three sets, training, validation (for GA training)
and testing. The training set is used for building the random tress (input RF).
The accuracy of the trees during the training is very high, reaching in most
cases above 99% accuracy. By the accuracy here we mean the ability of correctly
classifying a given instance. This is because these instances have been seen before
during the building stage and in random trees does not use burning. As a result,
it is not possible to use these instances (training set) for training the GARF as
well, and another indebtedness set of instances (Optimization set) is needed for
training the GA. In this paper we may refer to the validation set as GA-training
set.

3.1 Fitness

Before GRAF starts the evolution process, each tree in the input forest is used
to classify each of the instances in the GA-training set, all the classification



6 Lecture Notes in Computer Science: Authors’ Instructions

results of every tree for each instance is stored in a buffer. This is done to
speed up the evolution process and especially the fitness evaluation. So in the
fitness evaluation of each individual, instead of evaluating the performance of all
the trees in the individual against all the instances in the GA-training set, the
classification results are collected directly from the buffer.

A given instance is considered as correctly classified, if the number of trees in
the individual that has correctly classified it is greater than the number of trees
that have given incorrect classification. In contrast, a given instance is considered
as incorrectly classified, if the number of trees in the individual that has correctly
classified it is less than or equal to the number of trees that have given incorrect
classification. We call it a tie, if the number of trees that has correctly classified
the instance is equal to the number of the instances that have been incorrectly
classified,

The fitness of the individual is based on the number instances he has correctly
classified.

f(v) =

K∑
i

c(v, i) +
s(v, i)

K
(4)

where K is the number of instances in the validation set. c(v, i) return 1 if
individual v has correctly classified instance number i 0 otherwise. s(v, i) return
1 if it is a tie 0 otherwise.

If it is a tie we consider it as an incorrect classification. However, this could
mean that the performance of the individual could be improved by a small change
in the trees combination, and may benefit more from the genetic operators.
Therefore, we slightly increase the fitness of the individual by 1/K for each tie.

3.2 GARF Algorithm

In this section, we provide details of our GARF method in an algorithmic format.
The algorithm is depicted in Algorithm 1, where NG is the number of generations
in GA, S denoting the size of the population (number of individual random
forests) and n is the size of individual random forests in the initial population.

Having presented our proposed GARF technique in detail, the following sec-
tion has validated the technique via extensive experimental study.

4 Experimental Study

We have conducted a series of experiments to evaluate the performance of GARF
against the state of the art classification techniques. For our experiments, we used
Waikato Environment for Knowledge Analysis (WEKA) [16]. We compared the
performance of GARF against state of the art classification techniques; C4.5
decision tree, Support Vector Machines (SVM) and AdaBoost. We have also
used WEKA to build the RF, we denote this as RFweka. The initial RF on
which we used to build our initial population of RFs has been built using single
calls of the random tree technique in WEKA. We denoted this in our experiments



Lecture Notes in Computer Science: Authors’ Instructions 7

Algorithm 1 GARF Algorithm

{User Settings}
input N , M , S, NG
{Process}−→
RF = Call RandomForest(N , M)
for i = 1→ S do

for k = 1→ n do
x = Random(1→ N)
Add tree RFx to forest i in the GA population

−→
Pi

end for
end for
Evaluate each forest in the initial population

−→
P

for j = 1→ NG do
{Generate a new population by applying GA: operators mutation and crossover}−−−−→
PNew = GAOperators(

−→
P )

Evaluate each forest in
−→
P−−−−−−−→

bestForest← copy of best
−→
P−→

P =
−−−−→
PNew

end for
{Output}
A vector of trees

−−−−−−−→
bestForest

as RFin. RFin was not created as one forest. Instead WEKA was used to create
RFin as a set of independent random trees to enable us to evaluate each tree
separately.

We have used 15 real standard data sets from UCI repository [1]. Description
of the used data sets is given in Table 2. We have used a variety of data sets with
diversity in the number of instances, number of classes and number of attributes.

As aforementioned, we have divided the data sets into three equal parts;
one third for training, one third for optimisation (validation), and one third for
testing. In GARF, we have used the validation part to evolve our RFs . To
conduct fair experiments, we have combined the training and validation parts of
the data sets to be used for training the other techniques. The same testing set
has been used to calculate the performance of all the used classifiers.

The results of the experiments are shown in Table 2. The table shows our
GARF technique has always been superior than the initial RF (RFin). The
target in this paper is improving the performance of any given RF by changing
the trees in the forest, which has been achieved. However, we compared the
performance of GARF with state-of-the-art tree and bagging classifiers. Out of
the 15 data sets, GARF has performed the best over all the other classification
techniques in 8 data sets. For the letter data set, WEKA has not been able to
scale to run such a large data set for the classifiers we have used. But as shown
in the table, GARF has outperformed the initial RF. The GARF results shown
in Table 2 are the 10 runs, parameters settings and statistics of these results are
shown in Table 3 under Experiment 1.



8 Lecture Notes in Computer Science: Authors’ Instructions

Table 1: Data Sets Used
Name Ins Class. Train. Valid. Test. Name Ins Class. Train. Valid. Test.

diabetes 768 2 256 256 256 glass 214 7 71 72 71
ionosphere 351 2 118 117 116 iris 150 3 50 50 50
labor 57 2 20 19 18 soybean 683 19 228 228 227
vote 435 2 145 145 145 credit-g 1000 2 333 334 333
ecoli 336 8 110 113 113 letter 20000 17 6666 6667 6667
liver-disorders 345 7 113 116 116 sonar 208 61 69 70 69
vehicle 846 19 282 282 282 vowel 990 14 330 330 330
waveform-500 5000 41 1665 1668 1667

Table 2: Performance of GARF against state-of-the-art techniques
Data Set Name GARF RFin RFweka AdaBoost C4.5 SVM

diabetes 78.5156 76.5625 75.3906 80.0781 76.5625 79.2969
glass 71.8310 67.6056 76.0563 33.8028 59.1549 47.8873
ionosphere 95.6896 93.1034 92.2414 91.3793 93.1034 91.3793
iris 96.0000 92.0000 94.0000 96.0000 96.0000 90.0000
labor 94.4444 88.8889 77.7778 83.3333 77.7778 83.3333
soybean 85.4626 81.4978 87.2247 32.5991 83.7004 N/A
vote 96.5517 95.8621 98.6207 99.3103 97.2414 7.2414
credit-g 73.8739 72.3724 72.6727 68.4685 69.6697 71.4715
ecoli 71.6814 69.9115 69.0265 24.7788 68.1416 61.0619
letter 84.0108 83.3508 N/A N/A N/A N/A
liver-disorders 69.8276 65.5172 68.9655 59.4828 61.2069 57.7586
sonar 88.4058 85.5072 81.1594 76.8116 76.8116 84.058
vehicle 73.7589 70.9220 74.8227 38.6525 65.9574 66.3121
vowel 74.5455 73.0303 80.0000 15.7576 65.1515 51.5152
waveform-500 85.1830 84.5231 85.0030 73.0054 74.1452 86.0828

To assess the robustness of GARF with varying the experimental settings
of genetic algorithm, we have conducted a set of experiments with different
settings. The corresponding results are presented in Table 3. It can be noted that
GARF has proved to be robust with the various setting of parameters, achieving
consistently good accuracy over all the data sets used in our experimental study.

The above results open the door for a range of possibilities to build on the
success of GARF. One important success factor for any ensemble of classification
is to increase the diversity among the classifiers. We note that throughout our
experimental study we have used a fixed number of randomised features M =√
F . However, having a variable M will lead to having a more diverse trees in

the RF. Evolving this diversity of trees using genetic algorithm would have the
potential to further improve GARF.

Moreover, given the empirically validated robustness of RFs against noise,
it is suitable to address the problem of changing data, known as concept drift.
GARF can address this issue, because of the natural evolution of genetic al-
gorithm. However, an important issue needs to be addressed. One one hand,



Lecture Notes in Computer Science: Authors’ Instructions 9

Table 3: Performance of GARF with Varying Experimental Settings.

Experiment 1: PSize 100, NG 50, CR 0.9, MR 0.1 and variable InvSize of 100.

Experiment 2: PSize 100, NG 50, CR 0.9, MR 0.1 and fixed InvSize of 200.

Experiment 3: PSize 500, NG 50, CR 0.9, MR 0.1 and variable InvSize of 100.

Experiment 4: PSize 400, NG 50, CR 0.9, MR 0.1 and variable InvSize of 400.

where PSize = Population Size, NG = Number of Generations, CR = crossover rate,

MR = mutation rate, InvSize = GA string length (individual).

Experiment 1 Experiment 2
Data Set Name Best Size Worst Std. Best Size Worst Std.

Best Size Worst Std. Best Size Worst Std.
diabetes 78.5156 89 76.5625 3.124 77.7344 200 75.7813 3.1162
glass 71.831 87 67.6056 2.8169 73.2394 200 69.0141 2.9001
ionosphere 95.6896 87 93.1034 3.8204 94.8276 200 93.1034 3.7099
iris 96 95 92 3.6878 96 200 92 3.9396
labor 94.4444 95 88.8889 2.2103 94.4444 200 88.8889 2.7011
soybean 85.4626 89 82.8194 3.4327 84.141 200 81.9383 3.3849
vote 96.5517 91 95.1724 3.8448 96.5517 200 95.1724 3.8399
credit-g 73.8739 97 71.7718 2.974 73.5736 200 71.4715 2.9558
ecoli 71.6814 89 64.6018 3.0656 70.7965 200 68.1416 2.7534
letter 84.0108 89 83.5458 3.3576 83.7708 200 83.3358 3.3423
liver-disorders 69.8276 89 66.3793 2.8172 68.9655 200 65.5172 2.7801
sonar 88.4058 95 84.058 3.4174 88.4058 200 84.058 3.5381
vehicle 73.7589 89 70.922 2.9694 73.7589 200 71.6312 2.9846
vowel 74.5455 89 72.7273 2.9536 74.2424 200 72.7273 2.9709
waveform-500 85.183 87 83.9232 3.3813 84.823 200 84.0432 3.3816

Experiment 3 Experiment 4
Data Set Name Best Size Worst Std. Best Size Worst Std.

diabetes 78.5156 67 76.1719 3.123 78.125 154 76.1719 3.124
glass 70.4225 71 64.7887 2.8727 70.4225 171 67.6056 2.6575
ionosphere 96.5517 69 93.1034 3.8476 95.6897 131 93.1034 3.7853
iris 96 69 92 3.7094 96 161 92 3.7524
labor 94.4444 71 88.8889 2.3012 94.4444 161 88.8889 2.4125
soybean 88.5463 67 85.022 3.5571 85.9031 169 83.7004 3.4316
vote 96.5517 71 95.1724 3.8621 97.2414 167 95.1724 3.82
credit-g 74.7748 72 71.1712 3.0263 73.8739 161 71.7718 3.0042
ecoli 69.0265 73 63.7168 2.8263 70.7965 161 66.3717 2.9458
letter 84.3558 65 83.6508 3.3602 83.9658 149 83.5908 3.3521
liver-disorders 69.8276 71 66.3793 2.8799 69.8276 167 66.3793 2.7694
sonar 88.4058 69 81.1594 3.6435 88.4058 131 84.058 3.3803
vehicle 73.7589 67 70.922 2.9165 73.7589 169 71.6312 2.9559
vowel 75.1515 69 72.4242 3.0454 74.5455 151 72.7273 2.9654
waveform-500 85.4229 71 83.8632 3.4368 85.243 161 83.9232 3.4025

sudden and strong concept drift requires new trees to be added to the forest.
On the other hand, gradual and weak concept drift can easily utilise the genetic
algorithm to use existing trees in the RF. Extensions to GARF using more pow-



10 Lecture Notes in Computer Science: Authors’ Instructions

erful powerful methods such as Genetic Programming [4][3] to address this issue
would also have a great potential in the data stream mining area, also with the
use of more .

5 Conclusion

In this paper, we have empirically validated our novel approach to developing
an optimised Random Forest (RF) using genetic algorithms that we termed
GARF. The approach is based on generating a large RF, which is decomposed
into a number of smaller RF . The smaller forests are composed of trees drawn
randomly with replacement from the initial large RF. Genetic algorithm is an
optimisation technique which is then applied to evolve this initial population of
individual RF with the fitness function being the classification of the forest.

References

1. D. N. A. Asuncion. UCI machine learning repository, 2007.
2. H. Abdulsalam, D. B. Skillicorn, and P. Martin. Classification using streaming

random forests. IEEE Trans. Knowl. Data Eng., 23(1):22–36, 2011.
3. M. Bader-El-Den and R. Poli. Generating SAT local-search heuristics using a GP

hyper-heuristic framework. In Evolution Artificielle, 8th International Conference,
volume 4926, pages 37–49, Tours, France, 29-31 Oct. 2007. Springer.

4. M. B. Bader-El-Den, R. Poli, and S. Fatima. Evolving timetabling heuristics us-
ing a grammar-based genetic programming hyper-heuristic framework. Memetic
Computing Journal, 1(3):205–219, 2009.

5. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
6. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
7. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

Regression Trees. Statistics/Probability Series. Wadsworth Publishing Company,
Belmont, California, U.S.A., 1984.

8. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting, 1995.

9. R. L. Haupt and S. E. Haupt. Practical Genetic Algorithms. Wiley, 2004.
10. J. H. Holland. Adaptation in natural and artificial systems. MIT Press, Cambridge,

MA, USA, 1992.
11. M. Martin-Bautista and M.-A. Vila. A survey of genetic feature selection in mining

issues. In Proceedings of the Congress on Evolutionary Computation. CEC 99.,
volume 2, 1999.

12. I. Norenkov. Scheduling and allocation for simulation and synthesis of cad system
hardware. In In Proceedings EWITD 94, East-West International Conference,
ICSTI, pages 20–24, Moscow, 1994.

13. M. Robnik-Sikonja. Improving random forests. In ECML, pages 359–370, 2004.
14. M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical analysis of relieff

and rrelieff. Mach. Learn., 53:23–69, October 2003.
15. J. Sylvester and N. Chawla. Evolutionary ensemble creation and thinning. In

International Conference on Neural Networks., pages 5148–5155. IEEE, 2006.
16. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann Publishers, San Francisco, CA, 2nd edition, 2005.


