
Optimisation of Ensemble Classifiers using
Genetic Algorithm

Mohamed Medhat Gaber and Mohamed Bader-El-Den

School of Computing, University of Portsmouth,
Portsmouth PO1 3HE, Hampshire, UK

{Mohamed.Gaber,Mohamed.Bader}@port.ac.uk

Abstract. Ensemble learning is a well established machine learning ap-
proach that utilises a number of classifiers to aggregate the decision about
determining the class label. In its basic form this aggregation is achieved
via majority voting. A generic approach, termed EV-Ensemble, for evolv-
ing a new ensemble from an existing one is proposed in this paper. This
approach is applied to the high performance ensemble technique Ran-
dom Forests. This study uses a genetic algorithm approach to further
enhance the accuracy of Random Forests, based on the EV-Ensemble
approach. The new technique is termed as Genetic Algorithm based Ran-
dom Forests (GARF). Our extensive experimental study has proved that
Random Forests performance could be boosted when evolved using the
genetic algorithm approach.

Keywords: Random Forest, Genetic Algorithms, Ensemble Classification

1 Introduction

Ensemble classification is an established machine learning approach to boost the
performance of classification techniques. It is based on the process of building
a number of classifiers, and then collectively use them all to identify unlabelled
instances. Two widely used ensemble approaches could be identified, namely,
boosting and bagging. Boosting is an incremental process of building a sequence
of classifiers, where each classifier works on the incorrectly classified instances
of the previous one in the sequence. AdaBoost [5] is the representative of this
class of techniques. However, AdaBoost is pruned to overfitting. The other class
of ensemble approaches is the Bootstrap Aggregating (Bagging) [2]. Bagging
involves building each classifier in the ensemble using a randomly drawn sample
of the data, having each classifier giving an equal vote when labelling unlabelled
instances. Bagging is known to be more robust than boosting against model
overfitting. The main representative of bagging is Random Forests [3]. In random
forests, a number of trees are generated, having each tree built using a randomly
drawn instances from the data set. Randomisation is also applied when selecting
the best node to split on for all the trees. Typically this is an input parameter
which is equal to

√
F , where F is the number of features in the data set. More

details about random forests are presented in Section 3.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29582298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Gaber and Bader-El-Den

In this paper, we propose to evolve an initial ensemble of classifiers to boost
its performance. We termed this generic approach as EV-Ensemble, having the
first two characters referring to the evolutionary approach of building the ensem-
ble. EV-Ensemble is based on the theory that we can always derive an ensemble
from a larger one that has at least the same accuracy.

Genetic algorithm [7]is an optimisation approach that belongs to the family of
stochastic optimisation. It has long been used successfully in many applications
[6]. The process of applying genetic algorithm goes through four main steps,
initialisation, selection, reproduction and termination. In the initialisation step,
an initial population of individual solutions is generated. Using a fitness function,
individuals of good performance are used to produce a new generation. This
process is the selection step. The reproduction step uses mainly two techniques,
crossover and mutation, to produce a new generation. The reproduction process
continues until a termination condition is reached.

Motivated by the observation that a number of random forests could be drawn
from a larger random forest forming an initial population of individuals, genetic
algorithms could be an ideal optimisation solution to build a more accurate
ensemble. It is worth noting that this observation also applies to other ensemble
approaches. Thus, our hypothesis in conducting this research could be stated as
follows: genetic algorithm is able to further enhance the performance of ensemble
classification.

In this paper, we have proposed, developed and empirically evaluated a novel
approach to optimising random forests boosting their performance. Our ap-
proach is termed Genetic Algorithm based Random Forests (GARF). The GARF
approach starts by generating a large random forest of N decision trees, forming
a vector

−→
RF . Drawing randomly from

−→
RF a number of vectors each denoted as−→

rfi, where the number of trees in
−→
rfi denoted as ni ≤ N , i = 1..S, and S in

the number of random forests. In genetic algorithms terminology S is the size
of the population. This initial population is then evolved through a number of
generations, with the fitness function for each individual being its classification
accuracy.

The paper is organised as follows. A discussion of related work is given in
Section 2. Section 3 provides necessary background about ensemble learning,
random forests and genetic algorithm. The theoretical underpinnings of our pro-
posed approach EV-Ensemble are presented in section 4. Our proposed approach
GARF to boost the performance of random forests is detailed in Section 5. Ex-
tensive experimental study validating GARF is presented in Section 6. Finally,
the paper is concluded with a short summary and pointer to future developments
in Section 7.

2 Related Work

Genetic algorithm has been applied in machine learning and data mining ex-
tensively. The main application is the use of genetic algorithm in the feature
selection problem. An early survey on this topic could be found in [8]. How-

Optimisation of Ensemble Classifiers using Genetic Algorithm 3

ever, the relevant work to the research reported in this paper is detailed in the
following.

Robnik-Sikonja [11] has proposed possible extensions to random forests that
have proved to boost the accuracy of the original techniques presented in Section
3. The motivation behind these extensions is to decrease the correlation among
the trees in the random forest. As the original technique proposed by [3] uses Gini

index for finding the best split among the randomised vector of attributes
−→
FM .

In an attempt to decrease the dependency among attributes, Robnik-Sikonja has
used ReliefF [12] as a measure of the quality of the attributes. This extension
has not proved to have a good peformance on real data sets. A combination of
measures for the quality of attributes has been used to decide the split, having
each fifth tree in the forest uses a different measure. This method has proved
to boost the performance of the random forest, but not significantly. The other
approach proposed by Robnik-Sikonja was the use of weighted voting among
the trees using similarity of the instances with regards to their performance on
the individual trees. This method has proven to always boost the performance,
or at least being as good as the performance of the original the random forests
technique over a number of real data sets.

Sylvester and Chawla [13] have proposed the EVEN (EVolutionary ENsem-
bles). They have also attempted to use weighted voting among a set of homoge-
neous or heterogeneous classifiers. The EVEN system uses each of the classifier’s
performance over a validation set of data to weight the tree. Experimental vali-
dation has proved that EVEN can outperform the unweighted ensemble.

3 Background

As we build our GARF technique based on random forests and genetic algorithm,
the following subsections provide necessary background on the two methods.

3.1 Ensemble Classification and Random Forests

Two broad categories of techniques could be identified in machine learning, su-
pervised and unsupervised. Classification techniques belong to the supervised
learning category, in which a classifier induced from the data attempts to iden-
tify the value of an attribute, known as the class attribute, based on the values
of the other attributes in the same instance or record of data. This identification
is based on learning from historical data. The attributes other than the class are
known as predictors. Thus, if the value of the class label is y, and the values of
the predictors form the vector x, then y = f(x). Any classification technique

attempts to find f̂(x) that approximates the function f(x).
The notion of using a set of classifiers to identify unlabelled instances is

known as ensemble learning. Boosting and bagging are the two known successful
approaches to ensemble learning. Random forests belongs to the bagging ap-
proach. Bagging (Bootstrap Aggregating) has been proposed by Breiman in [2].
It is based on generating a number replicas from the training data by uniformly

4 Gaber and Bader-El-Den

sampling the instances with replacement. This sampling approach is known as
Bootstrap. It allows duplicate instances to appear in the same replica, and also
allows some instances to be left out. Statistically for a large replica that has the
number of instances equal to the size of the data set, 63.2% of the instances do
appear at least once in the replica [2]. Having a number of replicas, each denoted
as r out of the training data, a classifier c(r) is built using the sampled instances

in r. The classification is done via voting among a vector of classifiers
−−→
c(r) that

have been built using the corresponding vector of replicas −→r . A common per-
formance evaluation approach in bagging is to use out of bag method. This is
based on evaluating each instance using those classifiers in the ensemble that
did not use that instance for training. This means that not all the classifiers are
used together in testing.

Bagging has been applied successfully to an ensemble technique, termed Ran-
dom Forests. In addition to the Bootstrap sampling, randomisation over the fea-
ture space is also used. The technique is based on building a number of decision
tree classifiers, having each tree built from one replica out of the training data.
However, when splitting the nodes of the decision tree, only a subset of all the
features is used. Assuming that the number of features in the data set is F , the
standard setting for the random features to be used at each split is M =

√
F .

Breiman has used Gini index as the goodness measure to split the attributes on.
Gini index has been introduced by Brieman et al [4] in building the Classification
And Regression Trees CART technique. However, it has been first introduced
by the Italian statistician Corrado Gini in 1912. The index is a function that
could be used to measure the impurity of the data, i.e., how uncertain we are
about an event to occur. In classification, this event would be the determination
of the class label. The Gini impurity function in its original form is calculated
as follows.

Gini(t) = 1−
w∑
i=1

P (Ci|t)2 (1)

where t is a condition, w the number of classes in the data set, and Ci is the
ith class label in the data set.

By removing the condition t from the original form of the previous equation,
we can calculate the level of impurity for any data set before splitting as follows.

Gini(Class) = 1−
w∑
i=1

P (Ci)
2 (2)

The Gini index of any attribute A can then be calculated as follows.

GiniIndex(A) = Gini(Class)−
m∑
j=1

P (aj).Gini(A = aj) (3)

where m is the number of values for the attribute A.
The attribute with a higher Gini index is the one chosen to be split on. It is

worth noting that CART uses binary splits. The Random Forests algorithm is

Optimisation of Ensemble Classifiers using Genetic Algorithm 5

depicted in Algorithm 1, having N be the number of trees in the random forest,
F be the total number of features in the data set, M be the number of features
to split on at each node,

−→
FM be the vector of M features to split on, Ti be the

ith tree in the random forest, B(
−→
FM) be the best feature to split on, and

−→
RF be

the vector of all trees in the random forest.
It has been also established empirically that setting the number of trees N

in the forest to 100 or more will yield the best results [15]. However, increasing
N beyond 100 mostly will not have much effect on the accuracy negatively.

Algorithm 1 Random Forests Algorithm

{User Settings}
input N , M
{Process}
Create an empty vector

−→
RF

for i = 1→ N do
Create an empty tree Ti

repeat
Sample M out of all features F using Bootstrap sampling
Create a vector of the M features

−→
FM

Find Best Split Feature B(
−→
FM)

Create A New Node using B(
−→
FM) in Ti

until No More Instances To Split On
Add Ti to the

−→
RF

end for
{Output}
A vector of trees

−→
RF

3.2 Genetic Algorithm

GA is a well established evolutionary approach. Basic details about GA could
be found in [6]. In an ordinary GA, the chromosome represents an encoded solu-
tion. For some problems, the direct encoding of a solution in a GA’s chromosome
results in complex and large chromosomes that may need complex repairs after
the application of the GA’s operators. In contrast, in [9] the authors have intro-
duced what could be called as indirect encoding or Indirect GAs (IGAs), where
each gene in the chromosome represents a heuristic – could be seen as rule of
thumb, an educated guess or small rules – instead of representing part of the
solution. In an indirect GA, the chromosome may be much more compact and
robust, since it represents the heuristics that will be used in order to get a solu-
tion. A chromosome that represents heuristics instead of a is know as a Heuristic
Chromosome (HC).

The most common form of HC, whether, is one where the HC consists of
a number of genes and each of these genes represents the ID of a heuristic. In
order to build a solution, the heuristics in an HC are called one after the other or

6 Gaber and Bader-El-Den

in parallel based on the problem and what exactly the chromosome represents.
One of the main differences between different HC approaches lies in structure of
the HC and what exactly each gene represents.

The approach adopted in this paper is similar the IGA [9] approach, a single
random tree could be considered as a heuristic. Each gene in the chromosome
represent a pointer to a random tree classifier, and the chromosome as a whole
represent an ensemble classifier (forest). In order to get a solution (classification)
of a given instance, the genes in the chromosome are used to evaluate the instance
as detailed in section 5.

4 EV-Ensemble

EV-Ensemble is our novel approach to building an ensemble of classification. It
is based on the following theorem.

Theorem 1. Having a set of classifiers C that form an ensemble E with a
number of classifiers |C| = N , ∃ C ′ ⊆ C forming an ensemble Ê with a number
of classifiers |C ′| = n | Accuracy(Ê) ≥ Accuracy(E) and n ≤ N .

Proof. If all subsets of C denoted as Ψ(C), at least a single subset C† ∈ Ψ(C)
forming the Ê will have the maximum accuracy of all ensembles formed using
individual subsets of Ψ(C), given that C ⊆ C. Thus in the worst case, if no other
subset has proved a greater accuracy, C is chosen as the subset to form Ê.

In Theorem 1, it is stated that for an ensemble with a large number classifiers,
it is possible to find another ensemble formed from this large pool of classifiers
such that its performance is at least as good as the initially formed ensemble.
This theorem always holds given that it is possible to use the same superset of
classifiers to build the ensemble, if any of its proper subsets except ∅ proved not
to boost the performance of the ensemble.

Based on Theorem 1, we can derive the following corollary that forms the
base of our GARF technique.

Corollary 1. Given C ′
i ⊆ C and i = 1 . . . t, with some probability δ, it is possible

to evolve an ensemble Ê from all the C ′
i, such that Accuracy(Ê) ≥ Accuracy(E)

In Corollary 1, we state that if we can create a number of ensembles, each
drawn randomly from the pool of classifiers that form an initial large ensemble,
with some probability δ we can create an ensemble Ê that has a higher accuracy
than the initial ensemble. The δ can greatly increase if a well developed optimi-
sation method is used, however, the calculation of δ is out of the scope of this
work. In this work, we have used genetic algorithms, because of its empirically
proven performance. Our work basically aims at empirical proof of Corollary 1.

Having briefly discussed the theoretical underpinnings of our approach, in
the following sections, we discuss our novel technique GARF that evolves a new
ensemble from an initial random forest and experimentally proves its superiority
not only over the initial random forest, but also when compared with state-of-
the-art techniques.

Optimisation of Ensemble Classifiers using Genetic Algorithm 7

5 GARF

GARF uses variable size chromosome. Each chromosome (individual) in the
population represents a forest. Each of the genes in the chromosome represents
a random tree. Traditional genetic operators are used by the proposed GARF.
For the crossover, a standard single point crossover operators is adopted, where
a single crossover point on both parent’s individuals strings is selected. All data
beyond that point in both parents are swapped resulting in two new individuals.
For the mutation, a standard uniform mutation operator is employed, the oper-
ator replaces a randomly chosen tree/gene with another randomly selected tree
from the input trees forest that does not already exist in the forest/individual.

Each dataset is divided into three sets, training, validation (for GA training)
and testing. The training set is used for building the random tress (input random
forest). The accuracy of the trees during the training is very high, reaching in
most cases above 99% accuracy. By the accuracy here we mean the ability of
correctly classifying a given instance. This is because these instances have been
seen before during the building stage and in random trees does not use burning.
As a result, it is not possible to use these instances (training set) for training
the GARF as well, and another independent set of instances (optimisation set)
is used for training the GA. In this paper we refer to the validation set as EV-
training set.

5.1 Fitness

Before GRAF starts the evolution process, each tree in the input forest is used to
classify each of the instances in the EV-training set, all the classification results
for all the trees on all the instances are stored in a buffer. This is done to speed
up the evolution process and especially the fitness evaluation. Consequently, in
the fitness evaluation of each individual, instead of evaluating the performance
of all the trees in the individual against all the instances in the EV-training set,
the classification results are collected directly from the buffer.

A given instance is considered as correctly classified, if the number of trees in
the individual that has correctly classified it is grater than the number of trees
that has given incorrect classification. In contrast, a given instance is considered
as incorrectly classified, if the number of trees in the individual that has correctly
classified it is less than the number of trees that has given incorrect classification.
We call it a tie, if the number of trees that has correctly classified the instance
is equal to the number of trees that has been incorrectly classified,

The fitness of the individual is based on the number instances he has correctly
classified.

f(v) =

K∑
i

c(v, i) +
s(v, i)

K
(4)

where K is the number of instances in the validation set. c(v, i) return 1 if
individual v has correctly classified instance number i, and 0 otherwise. s(v, i)
return 1 if it is a tie and 0 otherwise.

8 Gaber and Bader-El-Den

If it is a tie, we consider it as an incorrect classification. However, this may
indicate that the performance of the individual could be improved by small
change in the trees combination, and may benefit more from the genetic opera-
tors. Therefore, we slightly increase the fitness of the individual by 1/K for each
tie.

5.2 GARF Algorithm

In this section, we provide details of our GARF method in an algorithmic for-
mat. Using the same notation introduced in Section 3, with the addition of NG
representing the number of generations in genetic algorithm, S denoting the size
of the population (number of individual random forests) and n is the size of
individual random forests in the initial population, Algorithm 2 describes the
proposed procedure.

Algorithm 2 GARF Algorithm

{User Settings}
input N , M , S, NG
{Process}−→
RF = Call RandomForest(N , M)
for i = 1→ S do

for k = 1→ n do
x = Random(1→ N)
Add tree RFx to forest i in the GA population

−→
Pi

end for
end for
Evaluate each forest in the initial population

−→
P

for j = 1→ NG do
{Generate a new population by applying GA: operators mutation and crossover}−−−−→
PNew = GAOperators(

−→
P)

Evaluate each forest in
−→
P−−−−−−−→

bestForest← copy of best
−→
P−→

P =
−−−−→
PNew

end for
{Output}
A vector of trees

−−−−−−−→
bestForest

Having presented our proposed GARF technique in details, the following
section has validated the technique via extensive experimental study.

6 Experimental Study

We have conducted a series of experiments to evaluate the performance of GARF
against the state of the art classification techniques. For our experiments, we used

Optimisation of Ensemble Classifiers using Genetic Algorithm 9

Waikato Environment for Knowledge Analysis (WEKA) [16]. We compared the
performance of GARF against the state of the art classification techniques; C4.5
decision tree [10], Support Vector Machines (SVM) [14] and AdaBoost [5], which
is a competitor ensemble classification. We have used also WEKA to build the
random forest, we denote this as RFweka. The initial random forest that we used
to build our initial population of random forests has been built using single calls
of the random tree technique in WEKA. We denoted this in our experiments as
RFin. RFin was not created as one forest. Instead WEKA was used to create
RFin as a set of independent random trees to enable us to evaluate each tree
separately.

We have used 15 real standard data sets from UCI repository [1]. We have
used a variety of data sets with diversity in the number of instances, number of
classes and number of attributes.

As aforementioned, we have divided the data sets into three equal parts;
one third for training, one third for optimisation (validation), and one third for
testing. In GARF, we have used the validation part to evolve our random forests.
To conduct fair experiments, we have combined the training and validation parts
of the data sets to be used for training the other techniques. The same testing
set has been used to calculate the performance of all the used classifiers.

The results of the experiments are shown in Table 1. The table shows our
GARF technique has been always superior than the initial random forest (RFin).
More importantly, out of the 15 data sets, GARF has performed the best over all
the other classification techniques in 8 data sets. For the letter data set, WEKA
has not been able to scale to run such a large data set for the classifiers we have
used. But as shown in the table, GARF has outperformed the initial random
forest.

Table 1: Performance of GARF against state-of-the-art techniques
Data Set Name GARF RFin RFweka AdaBoost C4.5 SVM

diabetes 78.5156 76.5625 75.3906 80.0781 76.5625 79.2969
glass 71.8310 67.6056 76.0563 33.8028 59.1549 47.8873
ionosphere 96.5517 93.1034 92.2414 91.3793 93.1034 91.3793
iris 96.0000 92.0000 94.0000 96.0000 96.0000 90.0000
labor 94.4444 88.8889 77.7778 83.3333 77.7778 83.3333
soybean 85.4626 81.4978 87.2247 32.5991 83.7004 N/A
vote 96.5517 95.8621 98.6207 99.3103 97.2414 7.2414
credit-g 73.8739 72.3724 72.6727 68.4685 69.6697 71.4715
ecoli 71.6814 69.9115 69.0265 24.7788 68.1416 61.0619
letter 84.0108 83.3508 N/A N/A N/A N/A
liver-disorders 69.8276 65.5172 68.9655 59.4828 61.2069 57.7586
sonar 88.4058 85.5072 81.1594 76.8116 76.8116 84.058
vehicle 73.7589 70.9220 74.8227 38.6525 65.9574 66.3121
vowel 74.5455 73.0303 80.0000 15.7576 65.1515 51.5152
waveform-500 85.1830 84.5231 85.0030 73.0054 74.1452 86.0828

10 Gaber and Bader-El-Den

7 Conclusion and Future Work

In this paper, we have empirically validated our novel approach to developing an
optimised random forest using genetic algorithms that we termed GARF. GARF
is based on our theoretical framework for evolving a large ensemble of classifiers
that we termed EV-Ensemble. The approach, when applied in GARF, is based on
generating a large random forest, which is decomposed into a number of smaller
random forests. The smaller forests are composed of trees drawn randomly with
replacement from the initial large random forest. Genetic algorithm is an opti-
misation technique is then applied to evolve this initial population of individual
random forests with the fitness function being the classification of the forest.
Thanks to the proven success of GARF, the application of genetic algorithms to
other forms of ensemble classification will be our next step in this research. We
also have a long-term plan to use the EV-Ensemble approach with heterogeneous
and homogeneous ensembles, utilising other optimisation techniques.

References

1. D. N. A. Asuncion. UCI machine learning repository, 2007.
2. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
3. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
4. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

Regression Trees. Statistics/Probability Series. Wadsworth Publishing Company,
Belmont, California, U.S.A., 1984.

5. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting, 1995.

6. R. L. Haupt and S. E. Haupt. Practical Genetic Algorithms with CD-ROM. Wiley-
Interscience, 2004.

7. J. H. Holland. Adaptation in natural and artificial systems. MIT Press, Cambridge,
MA, USA, 1992.

8. M. Martin-Bautista and M.-A. Vila. A survey of genetic feature selection in min-
ing issues. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 2, pages 3 vol. (xxxvii+2348), 1999.

9. I. Norenkov. Scheduling and allocation for simulation and synthesis of cad system
hardware. In In Proceedings EWITD 94, East-West International Conference,
ICSTI, pages 20–24, Moscow, 1994.

10. J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
11. M. Robnik-Sikonja. Improving random forests. In ECML, pages 359–370, 2004.
12. M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical analysis of relieff

and rrelieff. Mach. Learn., 53:23–69, October 2003.
13. J. Sylvester and N. Chawla. Evolutionary ensemble creation and thinning. In

Neural Networks, 2006. IJCNN’06. International Joint Conference on, pages 5148–
5155. IEEE, 2006.

14. V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York,
Inc., New York, NY, USA, 1995.

15. G. Williams. Data mining: Desktop survival guide. Togaware, 2010.
16. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann Publishers, San Francisco, CA, 2nd edition, 2005.

