783 research outputs found

    Stem cell mechanobiology

    No full text
    Stem cells are undifferentiated cells that are capable of proliferation, self-maintenance and differentiation towards specific cell phenotypes. These processes are controlled by a variety of cues including physicochemical factors associated with the specific mechanical environment in which the cells reside. The control of stem cell biology through mechanical factors remains poorly understood and is the focus of the developing field of mechanobiology. This review provides an insight into the current knowledge of the role of mechanical forces in the induction of differentiation of stem cells. While the details associated with individual studies are complex and typically associated with the stem cell type studied and model system adopted, certain key themes emerge. First, the differentiation process affects the mechanical properties of the cells and of specific subcellular components. Secondly, that stem cells are able to detect and respond to alterations in the stiffness of their surrounding microenvironment via induction of lineage-specific differentiation. Finally, the application of external mechanical forces to stem cells, transduced through a variety of mechanisms, can initiate and drive differentiation processes. The coalescence of these three key concepts permit the introduction of a new theory for the maintenance of stem cells and alternatively their differentiation via the concept of a stem cell 'mechano-niche', defined as a specific combination of cell mechanical properties, extracellular matrix stiffness and external mechanical cues conducive to the maintenance of the stem cell population.<br/

    Reinnervation of motor endplate-containing and motor endplate-less muscle grafts

    Full text link
    Damaged muscle fibers degenerate and are phagocytosed, but their connective tissue sheaths and myogenic cells survive. New myofibers regenerate within the connective tissue sheath and functional reinnervation is restored. The present study compared regenerating myofibers and their reinnervation in muscle grafts where the original motor endplates were removed and when they were present. In regenerating muscles, where the endplates were present, axons made neuromuscular connections with the myofibers. High levels of CAT activity, characteristic of cholinergic innervation, were reached and maintained in these muscles. Also, motor endplate-containing grafts developed characteristic muscle fiber types and nerve-evoked muscle contraction was observed. In preparations lacking the original endplate region, CAT activity initially rose to high levels, but with time diminished to 17% of control, and muscle fiber types did not develop. Muscle contraction after nerve stimulation was not observed in these grafts. It was concluded that, although a small number of motor endplates are formed in grafts devoid of original motor endplates, the presence of the motor endplate region in regenerating muscle is critical for development and maintenance of myofibers and the axons that contact them.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23219/1/0000148.pd

    Polarization and Charge Transfer in the Hydration of Chloride Ions

    Full text link
    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation, and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The Quantum Theory of Atoms in Molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared with the estimated quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2 level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.Comment: Slight revision, in press at J. Chem. Phy

    MUSI: an integrated system for identifying multiple specificity from very large peptide or nucleic acid data sets

    Get PDF
    Peptide recognition domains and transcription factors play crucial roles in cellular signaling. They bind linear stretches of amino acids or nucleotides, respectively, with high specificity. Experimental techniques that assess the binding specificity of these domains, such as microarrays or phage display, can retrieve thousands of distinct ligands, providing detailed insight into binding specificity. In particular, the advent of next-generation sequencing has recently increased the throughput of such methods by several orders of magnitude. These advances have helped reveal the presence of distinct binding specificity classes that co-exist within a set of ligands interacting with the same target. Here, we introduce a software system called MUSI that can rapidly analyze very large data sets of binding sequences to determine the relevant binding specificity patterns. Our pipeline provides two major advances. First, it can detect previously unrecognized multiple specificity patterns in any data set. Second, it offers integrated processing of very large data sets from next-generation sequencing machines. The results are visualized as multiple sequence logos describing the different binding preferences of the protein under investigation. We demonstrate the performance of MUSI by analyzing recent phage display data for human SH3 domains as well as microarray data for mouse transcription factor

    A pre-specified statistical analysis plan for the VERIFY study : Vildagliptin efficacy in combination with metformin for early treatment of T2DM

    Get PDF
    Aims To ensure the integrity of the planned analyses and maximize the clinical utility of the VERIFY study results by describing the detailed concepts behind its statistical analysis plan (SAP) before completion of data collection and study database lock. The SAP will be adhered to for the final primary data analysis of the VERIFY trial. Materials and Methods Vildagliptin efficacy in combination with metformin for early treatment of T2DM (VERIFY) is an ongoing, multicentre, randomized controlled trial aiming to demonstrate the clinical benefits of glycaemic durability and glucose control achieved with an early combination therapy in newly-diagnosed type 2 diabetes (T2DM) patients. Results The SAP was initially designed at the study protocol conception phase and later modified, as reported here, in collaboration between the steering committee members, statisticians, and the VERIFY study leadership team. All authors were blinded to treatment allocation. An independent statistician has additionally retrieved and presented unblinded data to the independent data safety monitoring committee. An overview of the trial design with a focus on describing the fine-tuning of the analysis plan for the primary efficacy endpoint, risk of initial treatment failure, and secondary, exploratory and pre-specified subgroup analyses is provided here. Conclusion According to optimal trial practice, the details of the statistical analysis and data-handling plan prior to locking the database are reported here. The SAP accords with high-quality standards of internal validity to minimize analysis bias and will enhance the utility of the reported results for improved outcomes in the management of T2DM.Peer reviewe

    Restoration of full mass in nerve-intact muscle grafts after delayed reinnervation

    Full text link
    A rat muscle freely grafted with the motor nerve intact becomes restored to full mass and contractile function, in contrast to the reduced weight of a standard free graft. By crushing the nerve to a nerve-intact graft and delaying reinnervation, full mass is still restored. One can conclude that earlier reinnervation is not the reason for the success of nerve-intact grafts, but that it is rather due to reinnervation along preserved Schwann cell channels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42762/1/18_2005_Article_BF01958882.pd

    Bves and NDRG4 regulate directional epicardial cell migration through autocrine extracellular matrix deposition

    Get PDF
    Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the “autocrine extracellular matrix (ECM) deposition” fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell–directed movement
    corecore