224 research outputs found

    Raman G band in double-wall carbon nanotubes combining p doping and high pressure

    Get PDF
    We use sulfuric acid as pressure medium to extrapolate the G-band position of the inner and outer tubes of double-wall carbon nanotubes. Keeping the G-band position of the inner and outer tubes constant, we can determine the fraction of double-wall and single-wall tubes in samples containing a mixture of the two. A-band-related electronic interwall interaction at 1560 cm−1 is observed, which is associated with the outer tube walls. This band is observed to shift with pressure at the same rate as the G band of outer tubes and is not suppressed with chemical doping. Differences in the interwall interaction is discussed for double-wall carbon nanotubes grown by the catalytic chemical-vapor method and double-wall carbon nanotubes obtained through transformation of peapods

    Light scattering of double wall carbon nanotubes under hydrostatic pressure: pressure effects on the internal and external tubes

    Get PDF
    We report high-pressure Raman light scattering studies up to 10 GPa on double walled carbon nanotubes using two pressure transmitting media. In alcohol, a clear splitting of the G band is observed up to 10 GPa. This splitting is evidence for both discontinuous tangential stress and continuous radial stress. A structural distortion seems to be present at 3 GPa, revealed by a spectroscopic signature at 1480 cm–1. With argon as the pressure transmitting medium, the nanotubes bundles show a transition at 6 GPa which corresponds to a collapse to a flattened structure and removes the splitting. The comparison of the pressure coefficients before the transition for the two pressure transmitting media shows that the ratio of the two coefficients associated with internal and external tubes, is the same but the absolute values are different

    Strong electron correlations in the normal state of FeSe0.42Te0.58

    Get PDF
    We investigate the normal state of the '11' iron-based superconductor FeSe0.42Te0.58 by angle resolved photoemission. Our data reveal a highly renormalized quasiparticle dispersion characteristic of a strongly correlated metal. We find sheet dependent effective carrier masses between ~ 3 - 16 m_e corresponding to a mass enhancement over band structure values of m*/m_band ~ 6 - 20. This is nearly an order of magnitude higher than the renormalization reported previously for iron-arsenide superconductors of the '1111' and '122' families but fully consistent with the bulk specific heat.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts

    Get PDF
    The controlled synthesis of carbon nanotubes by chemical vapor deposition requires tailored and wellcharacterized catalyst materials. We attempted to synthesize Mg1-xFexO oxide solid solutions by the combustion route, with the aim of performing a detailed investigation of the influence of the synthesis conditions (nitrate/urea ratio and the iron content) on the valency and distribution of the iron ions and phases. Notably, characterization of the catalyst materials is performed using 57Fe Mo¨ssbauer spectroscopy, X-ray diffraction, and electron microscopy. Several iron species are detected including Fe2+ ions substituting for Mg2+ in the MgO lattice, Fe3+ ions dispersed in the octahedral sites of MgO, different clusters of Fe3+ ions, and MgFe2O4-like nanoparticles. The dispersion of these species and the microstructure of the oxides are discussed. Powders markedly different from one another that may serve as model systems for further study are identified. The formation of carbon nanotubes upon reduction in a H2/CH4 gas atmosphere of the selected powders is reported in a companion paper

    Carbon Nanotubes by a CVD Method. Part II: Formation of Nanotubes from (Mg, Fe)O Catalysts

    Get PDF
    The aim of this paper is to study the formation of carbon nanotubes (CNTs) from different Fe/MgO oxide powders that were prepared by combustion synthesis and characterized in detail in a companion paper. Depending on the synthesis conditions, several iron species are present in the starting oxides including Fe2+ ions, octahedral Fe3+ ions, Fe3+ clusters, and MgFe2O4-like nanoparticles. Upon reduction during heating at 5 °C/min up to 1000 °C in H2/CH4 of the oxide powders, the octahedral Fe3+ ions tend to form Fe2+ ions, which are not likely to be reduced to metallic iron whereas the MgFe2O4-like particles are directly reduced to metallic iron. The reduced phases are R-Fe, Fe3C, and ç-Fe-C. Fe3C appears as the postreaction phase involved in the formation of carbon filaments (CNTs and thick carbon nanofibers). Thick carbon nanofibers are formed from catalyst particles originating from poorly dispersed species (Fe3+ clusters and MgFe2O4-like particles). The nanofiber outer diameter is determined by the particle size. The reduction of the iron ions and clusters that are well dispersed in the MgO lattice leads to small catalytic particles (<5 nm), which tend to form SWNTS and DWNTs with an inner diameter close to 2 nm. Well-dispersed MgFe2O4-like particles can also be reduced to small metal particles with a narrow size distribution, producing SWNTs and DWNTs. The present results will help in tailoring oxide precursors for the controlled formation of CNTs

    Fe/Co Alloys for the Catalytic Chemical Vapor Deposition Synthesis of Single- and Double-Walled Carbon Nanotubes (CNTs). 1. The CNT−Fe/Co−MgO System

    Get PDF
    Mg0.90FexCoyO (x + y ) 0.1) solid solutions were synthesized by the ureic combustion route. Upon reduction at 1000 °C in H2-CH4 of these powders, Fe/Co alloy nanoparticles are formed, which are involved in the formation of carbon nanotubes, which are mostly single and double walled, with an average diameter close to 2.5 nm. Characterizations of the materials are performed using 57Fe Mo¨ssbauer spectroscopy and electron microscopy, and a well-established macroscopic method, based on specific-surface-area measurements, was applied to quantify the carbon quality and the nanotubes quantity. A detailed investigation of the Fe/Co alloys’ formation and composition is reported. An increasing fraction of Co2+ ions hinders the dissolution of iron in the MgO lattice and favors the formation of MgFe2O4-like particles in the oxide powders. Upon reduction, these particles form R-Fe/Co particles with a size and composition (close to Fe0.50Co0.50) adequate for the increased production of carbon nanotubes. However, larger particles are also produced resulting in the formation of undesirable carbon species. The highest CNT quantity and carbon quality are eventually obtained upon reduction of the iron-free Mg0.90Co0.10O solid solution, in the absence of clusters of metal ions in the starting material. Introduction Catalyti

    Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubes−Epoxy Resin Composites

    Get PDF
    We found that the palmitic acid allows an efficient dispersion of carbon nanotubes in the epoxy matrix. We have set up an experimental protocol in order to enhance the CNTs dispersion in epoxy resin. Electrical conductivity is optimal using a 1:1 CNTs to palmitic acid weight ratio. The associated percolation threshold is found between 0.05 and 0.1 wt % CNTs, i.e., between 0.03 and 0.06 vol %. The SEM image shows essentially individual CNTs which is inagreement with conductivity measurements. In comparison with composites without palmitic acid, the use of palmitic acid improves the electrical properties of CNTs-epoxy resin composites

    In silico design of supramolecules from their precursors: Odd–even effects in cage-forming reactions

    Get PDF
    We synthesize a series of imine cage molecules where increasing the chain length of the alkanediamine precursor results in an odd–even alternation between [2 + 3] and [4 + 6] cage macrocycles. A computational procedure is developed to predict the thermodynamically preferred product and the lowest energy conformer, hence rationalizing the observed alternation and the 3D cage structures, based on knowledge of the precursors alone

    Temperature and pressure evolution of the crystal structure of Ax(Fe1-ySe)2 (A = Cs, Rb, K) studied by synchrotron powder diffraction

    Full text link
    Temperature-dependent synchrotron powder diffraction on Cs0.83(Fe0.86Se)2 revealed first order I4/m to I4/mmm structural transformation around 216{\deg}C associated with the disorder of the Fe vacancies. Irreversibility observed during the transition is likely associated with a mobility of intercalated Alkali atoms. Pressure-dependent synchrotron powder diffraction on Cs0.83(Fe1-ySe)2, Rb0.85(Fe1-ySe)2 and K0.8(Fe1-ySe)2 (y ~ 0.14) indicated that the I4/m superstructure reflections are present up to pressures of 120 kbar. This may indicate that the ordering of the Fe vacancies is present in both superconducting and non-superconductive states.Comment: 11 pages, 5 figures, 1 tabl
    • …
    corecore