281 research outputs found

    Coreshine in L1506C - Evidence for a primitive big-grain component or indication for a turbulent core history?

    Full text link
    The recently discovered coreshine effect can aid in exploring the core properties and in probing the large grain population of the ISM. We discuss the implications of the coreshine detected from the molecular cloud core L1506C in the Taurus filament for the history of the core and the existence of a primitive ISM component of large grains becoming visible in cores. The coreshine surface brightness of L1506C is determined from IRAC Spitzer images at 3.6 micron. We perform grain growth calculations to estimate the grain size distribution in model cores similar in gas density, radius, and turbulent velocity to L1506C. Scattered light intensities at 3.6 micron are calculated for a variety of MRN and grain growth distributions to compare with the observed coreshine. For a core with the overall physical properties of L1506C, no detectable coreshine is predicted for an MRN size distribution. Extending the distribution to grain radii of about 0.65 μ\mum allows to reproduce the observed surface brightness level in scattered light. Assuming the properties of L1506C to be preserved, models for the growth of grains in cores do not yield sufficient scattered light to account for the coreshine within the lifetime of the Taurus complex. Only increasing the core density and the turbulence amplifies the scattered light intensity to a level consistent with the observed coreshine brightness. The grains could be part of primitive omni-present large grain population becoming visible in the densest part of the ISM, could grow under the turbulent dense conditions of former cores, or in L1506C itself. In the later case, L1506C must have passed through a period of larger density and stronger turbulence. This would be consistent with the surprisingly strong depletion usually attributed to high column densities, and with the large-scale outward motion of the core envelope observed today.Comment: 6 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Three-dimensional Continuum Radiative Transfer Images of a Molecular Cloud Core Evolution

    Full text link
    We analyze a three-dimensional smoothed particle hydrodynamics simulation of an evolving and later collapsing pre-stellar core. Using a three-dimensional continuum radiative transfer program, we generate images at 7 micron, 15 micron, 175 micron, and 1.3 mm for different evolutionary times and viewing angles. We discuss the observability of the properties of pre-stellar cores for the different wavelengths. For examples of non-symmetric fragments, it is shown that, misleadingly, the density profiles derived from a one-dimensional analysis of the corresponding images are consistent with one-dimensional core evolution models. We conclude that one-dimensional modeling based on column density interpretation of images does not produce reliable structural information and that multidimensional modeling is required.Comment: accepted by ApJL, 4 pages, 4 figure

    Crystal structure and magnetic properties of some MM’X pnictides investigated by neutron diffraction and magnetisation measurements

    Get PDF
    In order to analyse the magnetic structure and to point out potential relationships between the structural parameters and magnetic behaviour, an in situ powder diffraction experiments were investigated for three specific compounds and systems MM'X. The study was carried out also by using magnetisation measurements. These investigations are supported by electronic structural calculations analyses carried out in parallel to this work.In order to analyse the magnetic structure and to point out potential relationships between the structural parameters and magnetic behaviour, an in situ powder diffraction experiments were investigated for three specific compounds and systems MM'X. The study was carried out also by using magnetisation measurements. These investigations are supported by electronic structural calculations analyses carried out in parallel to this work

    Detecting scattered light from low-mass molecular cores at 3.6 μ\mum - Impact of global effects on the observation of coreshine

    Full text link
    Recently discovered scattered light at 3-5 μ\mum from low-mass cores (so-called "coreshine") reveals the presence of grains around 1 μ\mum, which is larger than the grains found in the low-density interstellar medium. But only about half of the 100+ cores investigated so far show the effect. This prompts further studies on the origin of this detection rate. From the 3D continuum radiative transfer equation, we derive the expected scattered light intensity from a core placed in an arbitrary direction seen from Earth. We use the approximation of single scattering, consider extinction up to 2nd-order Taylor approximation, and neglect spatial gradients in the dust size distribution. The impact of the directional characteristics of the scattering on the detection of scattered light from cores is calculated for a given grain size distribution, and local effects like additional radiation field components are discussed. The surface brightness profiles of a core with a 1D density profile are calculated for various Galactic locations, and the results are compared to the approximate detection limits. We find that for optically thin radiation and a constant size distribution, a simple limit for detecting scattered light from a low-mass core can be derived that holds for grains with sizes smaller than 0.5 μ\mum. The extinction by the core prohibits detection in bright parts of the Galactic plane, especially near the Galactic center. For scattered light received from low-mass cores with grain sizes beyond 0.5 μ\mum, the directional characteristics of the scattering favors the detection of scattered light above and below the Galactic center, and to some extent near the Galactic anti-center. We identify the local incident radiation field as the major unknown causing deviations from this simple scheme.Comment: 10 pages, 10 figures, accepted by Astronomy & Astrophysic

    Molecular Line Profile Fitting with Analytic Radiative Transfer Models

    Full text link
    We present a study of analytic models of starless cores whose line profiles have ``infall asymmetry,'' or blue-skewed shapes indicative of contracting motions. We compare the ability of two types of analytical radiative transfer models to reproduce the line profiles and infall speeds of centrally condensed starless cores whose infall speeds are spatially constant and range between 0 and 0.2 km s-1. The model line profiles of HCO+ (J=1-0) and HCO+ (J=3-2) are produced by a self-consistent Monte Carlo radiative transfer code. The analytic models assume that the excitation temperature in the front of the cloud is either constant (``two-layer'' model) or increases inward as a linear function of optical depth (``hill'' model). Each analytic model is matched to the line profile by rapid least-squares fitting. The blue-asymmetric line profiles with two peaks, or with a blue shifted peak and a red shifted shoulder, can be well fit by the ``HILL5'' model (a five parameter version of the hill model), with an RMS error of 0.02 km s-1. A peak signal to noise ratio of at least 30 in the molecular line observations is required for performing these analytic radiative transfer fits to the line profiles.Comment: 48 pages, 20 figures, accepted for publication in Ap

    Grain size limits derived from 3.6 {\mu}m and 4.5 {\mu}m coreshine

    Get PDF
    Recently discovered scattered light from molecular cloud cores in the wavelength range 3-5 {\mu}m (called "coreshine") seems to indicate the presence of grains with sizes above 0.5 {\mu}m. We aim to analyze 3.6 and 4.5 {\mu}m coreshine from molecular cloud cores to probe the largest grains in the size distribution. We analyzed dedicated deep Cycle 9 Spitzer IRAC observations in the 3.6 and 4.5 {\mu}m bands for a sample of 10 low-mass cores. We used a new modeling approach based on a combination of ratios of the two background- and foreground-subtracted surface brightnesses and observed limits of the optical depth. The dust grains were modeled as ice-coated silicate and carbonaceous spheres. We discuss the impact of local radiation fields with a spectral slope differing from what is seen in the DIRBE allsky maps. For the cores L260, ecc806, L1262, L1517A, L1512, and L1544, the model reproduces the data with maximum grain sizes around 0.9, 0.5, 0.65, 1.5, 0.6, and > 1.5 {\mu}m, respectively. The maximum coreshine intensities of L1506C, L1439, and L1498 in the individual bands require smaller maximum grain sizes than derived from the observed distribution of band ratios. Additional isotropic local radiation fields with a spectral shape differing from the DIRBE map shape do not remove this discrepancy. In the case of Rho Oph 9, we were unable to reliably disentangle the coreshine emission from background variations and the strong local PAH emission. Considering surface brightness ratios in the 3.6 and 4.5 {\mu}m bands across a molecular cloud core is an effective method of disentangling the complex interplay of structure and opacities when used in combination with observed limits of the optical depth.Comment: 23 pages, 18 figures, accepted for publication in A&

    A Survey for Infall Motions toward Starless Cores. II. CS(21)CS (2-1) and N2H+(10)N_2H^+ (1-0) Mapping Observations

    Get PDF
    We present the results of an extensive mapping survey of 53 `starless' cores in the optically thick line of CS 2-1 and the optically thin lines of N2H+ 1-0 and C18O 1-0. The purpose of this survey was to search for signatures of extended inward motions. This study finds 10 `strong' and 9 `probable' infall candidates, based on δVCS\delta V_{CS} analysis and on the spectral shapes of CS lines. From our analysis of the blue-skewed CS spectra and the δVCS\delta V_{CS} parameter, we find typical infall radii of 0.06-0.14 pc. Also, using a simple two layer radiative transfer model to fit the profiles, we derive one-dimensional infall speeds, half of whose values lie in the range of 0.05-0.09 km s1^{-1}. These values are similar to those found in L1544 by Tafalla et al., and this result confirms that infall speeds in starless cores are generally faster than expected from ambipolar diffusion in a strongly sub-critical core. In addition, the observed infall regions are too extended to be consistent with the `inside-out' collapse model applied to a very low-mass star. In the largest cores, the spatial extent of the CS spectra with infall asymmetry is larger than the extent of the N2H+\rm N_2H^+ core by a factor of 2-3. All these results suggest that extended inward motions are a common feature in starless cores, and that they could represent a necessary stage in the condensation of a star-forming dense core.Comment: Two tex files for manuscript and tables, and 38 figures. To appear in ApJ

    Molecular ions in L1544. I. Kinematics

    Get PDF
    We have mapped the dense dark core L1544 in H13CO+(1-0), DCO+(2-1), DCO+(3-2), N2H+(1-0), NTH+(3-2), N2D+(2-1), N2D+(3-2), C18O(1-0), and C17O(1-0) using the IRAM 30-m telescope. We have obtained supplementary observations of HC18O+(1-0), HC17O+(1-0), and D13CO+(2-1). Many of the observed maps show a general correlation with the distribution of dust continuum emission in contrast to C18O(1-0) and C17O(1-0) which give clear evidence for depletion of CO at positions close to the continuum peak. In particular N2D+(2-1) and (3-2) and to a lesser extent N2H+(1-0) appear to be excellent tracers of the dust continuum. We find that the tracers of high density gas (in particular N2D+) show a velocity gradient along the minor axis of the L1544 core and that there is evidence for larger linewidths close to the dust emission peak. We interpret this using the model of the L1544 proposed by Ciolek & Basu (2000) and by comparing the observed velocities with those expected on the basis of their model. The results show reasonable agreement between observations and model in that the velocity gradient along the minor axis and the line broadening toward the center of L1544 are predicted by the model. This is evidence in favour of the idea that amipolar diffusion across field lines is one of the basic processes leading to gravitational collapse. However, line widths are significantly narrower than observed and are better reproduced by the Myers & Zweibel (2001) model which considers the quasistatic vertical contraction of a layer due to dissipation of its Alfvenic turbulence, indicating the importance of this process for cores in the verge of forming a star.Comment: 24 pages, 9 figures, to be published in Ap

    Sensitive Limits on the Water Abundance in Cold Low Mass Molecular Cores

    Get PDF
    We present SWAS observations of water vapor in two cold star-less clouds, B68 and Core D in rho Ophiuchus. Sensitive non-detections of the 1(10)-1(01) transition of o-H2O are reported for each source. Both molecular cores have been previously examined by detailed observations that have characterized the physical structure. Using these rather well defined physical properties and a Monte-Carlo radiation transfer model we have removed one of the largest uncertainties from the abundance calculation and set the lowest water abundance limit to date in cold low-mass molecular cores. These limits are < 3 x 10^{-8} (relative to H2) and < 8 x 10^{-9} in B68 and rho Oph D, respectively. Such low abundances confirm the general lack of ortho-water vapor in cold (T < 20 K) cores. Provided that the ortho/para ratio of water is not near zero, these limits are well below theoretical predictions and appear to support the suggestion that most of the water in dense low-mass cores is frozen onto the surfaces of cold dust grains.Comment: 12 pages, 3 figures, accepted by Astrophysical Journal Letter

    Collisional excitation of doubly and triply deuterated ammonia ND2_2H and ND3_3 by H2_2

    Get PDF
    The availability of collisional rate coefficients is a prerequisite for an accurate interpretation of astrophysical observations, since the observed media often harbour densities where molecules are populated under non--LTE conditions. In the current study, we present calculations of rate coefficients suitable to describe the various spin isomers of multiply deuterated ammonia, namely the ND2_2H and ND3_3 isotopologues. These calculations are based on the most accurate NH3_3--H2_2 potential energy surface available, which has been modified to describe the geometrical changes induced by the nuclear substitutions. The dynamical calculations are performed within the close--coupling formalism and are carried out in order to provide rate coefficients up to a temperature of TT = 50K. For the various isotopologues/symmetries, we provide rate coefficients for the energy levels below \sim 100 cm1^{-1}. Subsequently, these new rate coefficients are used in astrophysical models aimed at reproducing the NH2_2D, ND2_2H and ND3_3 observations previously reported towards the prestellar cores B1b and 16293E. We thus update the estimates of the corresponding column densities and find a reasonable agreement with the previous models. In particular, the ortho--to--para ratios of NH2_2D and NHD2_2 are found to be consistent with the statistical ratios
    corecore