23 research outputs found

    Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus

    Get PDF
    The population of Calanus finmarchicus in the North Sea is replenished each spring by invasion from an overwintering stock located beyond the shelf edge. A combincation of field observations, statistical analysis of Continuous Plankton Recorder (CPR) data, and particle tracking model simulations, was used to investigate the processes involved in the cross-shelf invasion. The results showed that the main source of overwintering animals entering the North Sea in the spring is at depths of greater than 600m in the Faroe Shetland Channel, where concentrations of up to 620m -3 are found in association with the overflow of Norwegian Sea Deep Water (NSDW) across the Iceland Scotland Ridge. The input of this water mass to the Faroe Shetland Channel, and hence the supply of overwintering C. finmarchicus, has declined since the late 1960s due to changes in convective processes in the Greenland Sea. Beginning in February, animals start to emerge from the overwintering state and migrate to the surface waters, where their transport into the North Sea is mainly determined by the incidence of north-westerly winds that have declined since the 1960s. Together, these two factors explain a high proportion of the 30-year trends in spring abundance in the North Sea as measured by the CPR survey. Both the regional winds and the NSDW overflow are connected to the North Atlantic Oscillation Index (NAO), which is an atmospheric climate index, but with different time scales of response. Thus, interannual fluctuations in the NAO can cause immediate changes in the incidence of north-westerly winds without leading to corresponding changes in C. finmarchicus abundance in the North Sea, because the NSDW overflow responds over longer (decadal) time scales

    Simulating the interaction of seagrasses with their ambient flow

    No full text
    The interaction of seagrasses with the dynamics of an oscillatory wave induced flow is assessed with a new Lagrangian plant model. The plant model simulates moving plants in canopies and their dissipative effect on the ambient flow. Concomitantly the plant model is interactively coupled to a 3D hydrodynamic numerical model allowing for a bilateral feedback between moving plants and flow. Model results demonstrate that this interaction causes a modification of current profiles within and above a canopy as compared to an undisturbed flow. While the overall effect of submerged plant canopies is a dampening of dynamics, the flow may locally be intensified. The model predicted an intensification of the flow near the top of a canopy in concurrence with field and laboratory observations. Dissipation in the coupled model, due to the applied non-linear friction law, grows exponentially with increasing flow. As a result the permeability of a canopy to the ambient flow decreases with increasing dissipation. Consequently, at high flow velocities, while becoming increasingly impermeable, a canopy acts like an obstacle that deflects the flow above it, which causes the observed intensification. Results for canopies consisting of seagrasses with different leaf structure and plant geometry show remarkable differences in predicted plant motions, current profiles, drag forces, and velocity shear. Predictions for moving plants are compared with those for rigid, less flexible, structures and undisturbed flow

    Dynamics of plant-flow interactions for the seagrass Amphibolis antarctica: Field observations and model simulations

    No full text
    Seagrass canopies influence water flow partly as a consequence of their morphology. Amphibolis antarctica (Labill.) Sonder et Aschers. ex Aschers, an Australian endemic, is different morphologically from more-commonly studied blade-like seagrasses such as Zostera and Thalassia. Field measurements and model predictions were used to characterize water flow within and above an A. antarctica meadow. A series of high resolution three-dimensional velocity measurements were obtained within, above and adjacent to A. antarctica meadows at different heights above the seabed. Field observations on the effect of seagrass canopy on flow show an overall damping effect. Power spectra of the velocity data revealed a reduction in energy from 500 (cm s-1)2 s-1 to 10 (cm s-1)2 s-1 within the canopy. Profiles of kinetic energy were calculated from in situ velocity measurements at 5 cm increments from 10 cm to 80 cm above the seabed, within and above the seagrass canopy. There was an intensification of flow where the canopy structure was densest (approximately 40 cm above the seabed) and slightly above it. The baffling effect of the canopy was most effective 25 cm above the seabed: here the flow was reduced from 50 cm s-1 at free surface to 2-5 cm s-1. A slight increase in flow within the canopy was seen 10 cm above the sediment due to reduced friction exerted by the lower leafless stems of the plants. A high resolution three-dimensional hydrodynamic model was coupled to a ten-layer canopy model for shallow coastal site dimensions. By applying different friction factors to various parts of the plant, mimicking its architecture, water flow was shown to be altered by the plant canopy according to its morphology. The derived computational results were in good agreement with the observed in situ velocity and kinetic energy changes. As a result of this study it is now possible to accurately predict plant-flow interactions determining pollen and particles distribution and dispersal

    Estimates of pollen dispersal and capture within Amphibolis antarctica (Labill.) Sonder and Aschers. ex Aschers. meadows

    No full text
    The hydrodynamic micro-climate created within seagrass meadows and their immediate surroundings has implications for pollen transport and settling within seagrass meadows. Quantitative estimates of plant and meadow architecture, flowering and pollination biology of Amphibolis antarctica indicated that the position of male and female flowers on a shoot coincided with areas of high turbulence in the canopy. A model on pollen dispersal and capture in an Amphibolis meadow was derived from both plant structure (meadow architecture) and in situ three dimensional velocity measurements. On a purely hydrodynamic basis, high pollen capture is expected in a more energetic and turbulent environment. However, the model results showed that the combination of flow dynamics and plant structure, i.e., plant-flow interactions, are more favorable for pollen capture in an area of less favorable conditions, e.g., less energetic. This suggests that, as a response to their hydrodynamic environment, the same species of seagrass may have differing meadow and plant structures, such as different shoot length and shoot density

    Estimates of the circulation and turn-over times of the German Bight during winter respect to eutrophication

    No full text
    SIGLEAvailable from TIB Hannover: RN 8908(85-070) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore