3,997 research outputs found

    Evaluation of Cache Inclusion Policies in Cache Management

    Get PDF
    Processor speed has been increasing at a higher rate than the speed of memories over the last years. Caches were designed to mitigate this gap and, ever since, several cache management techniques have been designed to further improve performance. Most techniques have been designed and evaluated on non-inclusive caches even though many modern processors implement either inclusive or exclusive policies. Exclusive caches benefit from a larger effective capacity, so they might become more popular when the number of cores per last-level cache increases. This thesis aims to demonstrate that the best cache management techniques for exclusive caches do not necessarily have to be the same as for non-inclusive or inclusive caches. To assess this statement we evaluated several cache management techniques with different inclusion policies, number of cores and cache sizes. We found that the configurations for inclusive and non-inclusive policies usually performed similarly, but for exclusive caches the best configurations were indeed different. Prefetchers impacted performance more than replacement policies, and determined which configurations were the best ones. Also, exclusive caches showed a higher speedup on multi-core. The least recently used (LRU) replacement policy is among the best policies for any prefetcher combination in exclusive caches but is the one used as a baseline in most cache replacement policy research. Therefore, we conclude that the results in this thesis motivate further research on prefetchers and replacement policies targeted to exclusive caches

    Topological pressure for discontinuous semiflows and a variational principle for impulsive dynamical systems

    Full text link
    We introduce four, a priori different, notions of topological pressure for possibly discontinuous semiflows acting on compact metric spaces and observe that they all agree with the classical one when restricted to the continuous setting. Moreover, for a class of \emph{impulsive semiflows}, which are examples of discontinuous systems, we prove a variational principle. As a consequence, we conclude that for this class of systems the four notions coincide and, moreover, they also coincide with the notion of topological pressure introduced in \cite{ACS17}

    Shape analysis using fractal dimension: a curvature based approach

    Full text link
    The present work shows a novel fractal dimension method for shape analysis. The proposed technique extracts descriptors from the shape by applying a multiscale approach to the calculus of the fractal dimension of that shape. The fractal dimension is obtained by the application of the curvature scale-space technique to the original shape. Through the application of a multiscale transform to the dimension calculus, it is obtained a set of numbers (descriptors) capable of describing with a high precision the shape in analysis. The obtained descriptors are validated in a classification process. The results demonstrate that the novel technique provides descriptors highly reliable, confirming the precision of the proposed method

    Industrial practitioners' mental models of adversarial machine learning

    Get PDF
    Although machine learning is widely used in practice, little is known about practitioners' understanding of potential security challenges. In this work, we close this substantial gap and contribute a qualitative study focusing on developers' mental models of the machine learning pipeline and potentially vulnerable components. Similar studies have helped in other security fields to discover root causes or improve risk communication. Our study reveals two facets of practitioners' mental models of machine learning security. Firstly, practitioners often confuse machine learning security with threats and defences that are not directly related to machine learning. Secondly, in contrast to most academic research, our participants perceive security of machine learning as not solely related to individual models, but rather in the context of entire workflows that consist of multiple components. Jointly with our additional findings, these two facets provide a foundation to substantiate mental models for machine learning security and have implications for the integration of adversarial machine learning into corporate workflows, decreasing practitioners' reported uncertainty, and appropriate regulatory frameworks for machine learning security

    Quantitative information flow, with a view

    Get PDF
    We put forward a general model intended for assessment of system security against passive eavesdroppers, both quantitatively ( how much information is leaked) and qualitatively ( what properties are leaked). To this purpose, we extend information hiding systems ( ihs ), a model where the secret-observable relation is represented as a noisy channel, with views : basically, partitions of the state-space. Given a view W and n independent observations of the system, one is interested in the probability that a Bayesian adversary wrongly predicts the class of W the underlying secret belongs to. We offer results that allow one to easily characterise the behaviour of this error probability as a function of the number of observations, in terms of the channel matrices defining the ihs and the view W . In particular, we provide expressions for the limit value as n → ∞, show by tight bounds that convergence is exponential, and also characterise the rate of convergence to predefined error thresholds. We then show a few instances of statistical attacks that can be assessed by a direct application of our model: attacks against modular exponentiation that exploit timing leaks, against anonymity in mix-nets and against privacy in sparse datasets

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    Asymptotic information leakage under one-try attacks

    Get PDF
    We study the asymptotic behaviour of (a) information leakage and (b) adversary’s error probability in information hiding systems modelled as noisy channels. Specifically, we assume the attacker can make a single guess after observing n independent executions of the system, throughout which the secret information is kept fixed. We show that the asymptotic behaviour of quantities (a) and (b) can be determined in a simple way from the channel matrix. Moreover, simple and tight bounds on them as functions of n show that the convergence is exponential. We also discuss feasible methods to evaluate the rate of convergence. Our results cover both the Bayesian case, where a prior probability distribution on the secrets is assumed known to the attacker, and the maximum-likelihood case, where the attacker does not know such distribution. In the Bayesian case, we identify the distributions that maximize the leakage. We consider both the min-entropy setting studied by Smith and the additive form recently proposed by Braun et al., and show the two forms do agree asymptotically. Next, we extend these results to a more sophisticated eavesdropping scenario, where the attacker can perform a (noisy) observation at each state of the computation and the systems are modelled as hidden Markov models

    Cryptographically Secure Information Flow Control on Key-Value Stores

    Full text link
    We present Clio, an information flow control (IFC) system that transparently incorporates cryptography to enforce confidentiality and integrity policies on untrusted storage. Clio insulates developers from explicitly manipulating keys and cryptographic primitives by leveraging the policy language of the IFC system to automatically use the appropriate keys and correct cryptographic operations. We prove that Clio is secure with a novel proof technique that is based on a proof style from cryptography together with standard programming languages results. We present a prototype Clio implementation and a case study that demonstrates Clio's practicality.Comment: Full version of conference paper appearing in CCS 201
    corecore