
EVALUATION OF CACHE INCLUSION POLICIES IN CACHE

MANAGEMENT

A Thesis

by

LUNA BACKES DRAULT

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Daniel Jiménez

Committee Members, Paul Gratz

Dilma Da Silva

Head of Department, Dilma Da Silva

August 2017

Major Subject: Computer Engineering

Copyright 2017 Luna Backes Drault

ABSTRACT

Processor speed has been increasing at a higher rate than the speed of memories

over the last years. Caches were designed to mitigate this gap and, ever since, several

cache management techniques have been designed to further improve performance.

Most techniques have been designed and evaluated on non-inclusive caches even

though many modern processors implement either inclusive or exclusive policies.

Exclusive caches benefit from a larger effective capacity, so they might become more

popular when the number of cores per last-level cache increases.

This thesis aims to demonstrate that the best cache management techniques

for exclusive caches do not necessarily have to be the same as for non-inclusive or

inclusive caches. To assess this statement we evaluated several cache management

techniques with different inclusion policies, number of cores and cache sizes.

We found that the configurations for inclusive and non-inclusive policies usually

performed similarly, but for exclusive caches the best configurations were indeed

different. Prefetchers impacted performance more than replacement policies, and

determined which configurations were the best ones. Also, exclusive caches showed

a higher speedup on multi-core.

The least recently used (LRU) replacement policy is among the best policies for

any prefetcher combination in exclusive caches but is the one used as a baseline in

most cache replacement policy research. Therefore, we conclude that the results in

this thesis motivate further research on prefetchers and replacement policies targeted

to exclusive caches.

ii

DEDICATION

To Alex, for his love, patience and unconditional support.

iii

ACKNOWLEDGMENTS

First of all, I want to thank my advisor, Daniel Jiménez, for giving me the chance

of joining his lab and believing in me to be his first master’s student. I appreciate

the support and freedom he gave me to explore a topic I was very interested in. I also

want to thank the committee members Paul V. Gratz and Dilma Da Silva for being

available on their busy schedules and asking me good questions and giving feedback

on this work.

I also want to thank many people that helped me directly and indirectly such as

labmates, friends and family. Elvira, who I met a few years ago in Italy and I ended

up in her group across the world. It was nice having a known and friendly face in the

university. She made me feel welcomed and helped me during this two years, we will

miss you in the lab. Sangam for her understanding and help during stressful days.

And to all my other labmates for their feedback and talks, Ivan, Elba and Samira.

I also thank my previous advisor, Filippo Mantovani, for still giving me advice

despite the distance and time difference. Including musical advice to help me write

the last part of this thesis.

To my parents, Maria Teresa and Paulo, for supporting my decision to move in

to a different country and being able to visit and attend the defense of this thesis,

together with Alejandro and Emilia. I really appreciated their support and the

delicious food they brought. And to all the rest of my family that are scattered

around the world but still care about and support me. My 24 cousins: Ceci, Laura,

Maria Emilia, July, Josefina, Tomy, Martin, Guada, Fran, Majo, Juan, Edu, Luciana,

Nacho, Santy, Sebi, Juampy, Lucas, Agustín, Betty, Katia, Yaundé, Kayawe, Kitwe,

and their wives/husbands and children; for cheering me up from the distance and

iv

caring about me. My 16 aunts and uncles: Mary, Lucy, Titi, Cecilia, Miguel, Monica,

Eduardo, Alicia, Emilio, José Maria, Rosi, Tito, Marcela, Ghi, Julius and Denise;

for their love. My grandmother Lilia, for always sharing her knowledge and wisdom

from her 101 years. My grandfathers and my vó Erica, that live in my memory. Most

of them are far away but I remember them every day.

To many friends in different stages of my life, such as Alba, Laura, Ainoa,

Francesc, Aleix, Khaoula, Rio, Jing, Dani, Lis, Jane, Mathi and Andrea. To fol-

low Alba’s latest success in SoundSix slightly delayed the progress of this thesis but

surely made it more special.

Most special thanks to Alex, for surviving through two of my degrees and agreed

to the third one. This would not have been possible without his love, support, cheers

and confidence in me. The third time’s the charm.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Daniel

A. Jiménez and Professor Dilma Da Silva of the Department of Computer Science

and Engineering and Professor Paul V. Gratz of the Department of Electrical and

Computer Engineering.

The traces and the simulator were provided by Jinchun Kim of the Department

of Electrical and Computer Engineering. He also contributed on this thesis by up-

grading the simulator and adding more features to experiment.

All other work conducted for the thesis was completed by the student indepen-

dently.

Funding Sources

This research was supported in part by a grant from the National Science Foun-

dation, NSF CCF-1216604/1332598.

Portions of this research were conducted with the advanced computing resources

provided by Texas A&M High Performance Research Computing.

vi

NOMENCLATURE

BRRIP bimodal RRIP

CPU central processing unit

CSV comma separated value

DAAMPM DRAM-aware access map pattern matching

DRAM dynamic RAM

DRRIP dynamic RRIP

EAF evicted address filter

eDRAM embedded DRAM

FP frequency priority

GIPPR genetic insertion and promotion for pseudo-LRU

replacement

HP hit promotion

IPC instructions per cycle

IPV insertion and promotion vector

KPC kill the program counter

KPC-P KPC prefetching algorithm

KPC-R KPC replacement algorithm

LLC last-level cache

vii

LRU least recently used

MDPP minimal disturbance placement and promotion

MLP memory-level parallelism

MPKI misses per kiloinstruction

MRU most recently used

MSHR miss status holding registers

OS operating system

PC program counter

PLRU pseudo least recently used

RAM random-access memory

RRIP re-reference interval prediction

RRPV re-reference prediction value

SDBP sampling-based dead block prediction

SHiP signature-based hit predictor

SMP symmetric multiprocessor

SPEC standard performance evaluation corporation

SRAM static RAM

SRRIP static RRIP

SSH secure shell

viii

TACO Texas Architecture and Compiler Optimization

TLB translation lookaside buffer

ix

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES vi

NOMENCLATURE . vii

TABLE OF CONTENTS . x

LIST OF FIGURES . xiv

LIST OF TABLES . xvi

1. INTRODUCTION . 1

1.1 My Project . 2

1.1.1 Objectives . 2

1.1.2 Contributions . 3

1.2 Document Structure . 3

2. BACKGROUND . 4

2.1 Memory Hierarchy . 5

2.1.1 Miss Types . 8

2.1.2 Load Flow . 9

2.1.3 Write Policies . 11

2.1.4 Cache Coherence . 12

2.1.4.1 MSI Protocol . 14

2.1.4.2 MSI-Like Protocols 15

2.2 Inclusion Policies . 16

2.2.1 Inclusive . 17

2.2.2 Exclusive . 19

2.2.3 Non-Inclusive . 21

2.2.4 Summary of Inclusions . 22

x

2.3 Replacement Policies . 23

2.3.1 LRU . 25

2.4 Prefetchers . 26

2.4.1 Next-Line . 28

2.4.2 Instruction Pointer-Based Stride 28

2.4.3 Best-Offset . 29

2.4.4 DRAM-Aware Access Map Pattern Matching 30

2.4.5 KPC . 31

3. RELATED WORK . 33

3.1 Re-Reference Interval Prediction . 33

3.2 Sampling Dead Block Prediction . 35

3.3 Signature-Based Hit Predictor . 37

3.4 Minimal Disturbance Placement and Promotion 37

3.5 Evicted Address Filter . 39

3.6 Perceptron Learning for Reuse Prediction 40

3.7 Hawkeye . 41

3.8 Bypass and Insertion . 42

3.9 Hierarchy-Awareness and Bypass . 43

4. METHODOLOGY . 47

4.1 Experimental Setup . 47

4.1.1 Host Machine . 47

4.1.2 Benchmarks . 47

4.1.3 Simulator . 50

4.2 Evaluation . 52

4.2.1 Configurations . 52

4.2.2 Performance Measurement . 53

5. IMPLEMENTATION . 55

5.1 ChampSim Code . 55

5.1.1 Cache Operation . 55

5.1.2 Non-Inclusive Implementation 56

5.1.3 Statistics . 58

5.2 Modifying ChampSim . 58

5.2.1 Inclusive Implementation . 58

5.2.2 Exclusive Implementation . 62

5.3 Scripts . 65

5.3.1 Execute . 65

5.3.2 Plots . 67

xi

6. RESULTS . 69

6.1 Single-Core Results . 69

6.1.1 Inclusion Results . 71

6.1.2 Prefetcher Impact . 71

6.1.3 Replacement Policy Impact 72

6.2 Multi-Core Results . 72

6.2.1 Inclusion Results . 74

6.2.2 Prefetcher Impact . 75

6.2.3 Replacement Policy Impact 75

6.3 Size Sensitivity . 76

6.3.1 Inclusion Results . 78

6.3.2 Prefetcher Impact . 78

6.3.3 Replacement Policy Impact 79

6.4 Discussion . 79

7. SUMMARY . 81

7.1 Conclusions . 81

7.2 Future Work . 83

REFERENCES . 85

APPENDIX A. SINGLE-CORE RESULTS 93

A.1 Astar . 94

A.2 Bwaves . 95

A.3 Bzip2 . 96

A.4 CactusADM . 97

A.5 Data_Caching . 98

A.6 Gcc . 99

A.7 GemsFDTD . 100

A.8 Graph_Analytics . 101

A.9 Gromacs . 102

A.10 Lbm . 103

A.11 Leslie3d . 104

A.12 Libquantum . 105

A.13 Mcf . 106

A.14 Milc . 107

A.15 Mlpack_Cf . 108

A.16 Omnetpp . 109

A.17 Sat_Solver . 110

A.18 Soplex . 111

A.19 Sphinx3 . 112

xii

A.20 Wrf . 113

A.21 Xalancbmk . 114

A.22 Zeusmp . 115

APPENDIX B. MULTI-CORE RESULTS . 116

B.1 Astar-Bzip2-Sphinx3-Data_Caching 117

B.2 Astar-Bzip2-Sphinx3-Data_Caching 118

B.3 Astar-Leslie3d-Soplex-Zeusmp . 119

B.4 Bwaves-Milc-Data_Caching-Sat_Solver 120

B.5 Bzip2-Omnetpp-Data_Caching-Graph_Analytics 121

B.6 CactusADM-GemsFDTD-Lbm-Leslie3d 122

B.7 CactusADM-Gromacs-Lbm-Milc . 123

B.8 CactusADM-Gromacs-Sphinx3-Sat_Solver 124

B.9 Mcf-Milc-Omnetpp-Sat_Solver . 125

APPENDIX C. SINGLE-CORE SIZE SENSITIVITY RESULTS 126

C.1 Astar . 127

C.2 Bwaves . 128

C.3 Bzip2 . 129

C.4 CactusADM . 130

C.5 Data_Caching . 131

C.6 Gcc . 132

C.7 GemsFTD . 133

C.8 Graph_Analytics . 134

C.9 Gromacs . 135

C.10 Lbm . 136

C.11 Leslie3d . 137

C.12 Libquantum . 138

C.13 Mcf . 139

C.14 Milc . 140

C.15 Mlpack_Cf . 141

C.16 Omnetpp . 142

C.17 Sat_Solver . 143

C.18 Soplex . 144

C.19 Sphinx3 . 145

C.20 Wrf . 146

C.21 Xalancbmk . 147

C.22 Zeusmp . 148

xiii

LIST OF FIGURES

FIGURE Page

2.1 Diagram of the memory hierarchy in a modern processor. The higher

the capacity of the cache, the higher the latency to access a block in

that cache. In a multi-core, there are replications of the "core" part

inside the "SoC" part. 7

2.2 Cache coherence problem example. 13

2.3 Memory hierarchy in a multi-core processor. 13

2.4 Simplified state transition diagram of the MSI cache coherence protocol. 15

2.5 Diagram to show where the data is in an a) inclusive, b) non-inclusive,

and c) exclusive cache. The intersection is data duplication. 17

5.1 Main functions on ChampSim to operate the cache. 55

5.2 Inclusive cache high-level code on top of the non-inclusive implemen-

tation. 61

5.3 Diagram with all the possible cases on an LLC miss in an inclusive

cache on a single core simulation. 63

5.4 Exclusive cache high-level code on top of the non-inclusive implemen-

tation. 66

6.1 Geomean speedups to compare different configurations of L1 and L2

prefetchers, replacement policies and cache inclusions. The configura-

tions compared are: L1 prefetcher, L2 prefetcher, replacement policy

and cache inclusion. The Y-axis shows the speedup over the baseline

configuration: no prefetchers, LRU replacement policy and a non-

inclusive cache. The X-axis shows the different cache configurations,

in order of: L1 prefetcher (l1p), L2 prefetcher (l2p) and replacement

policy (repl). 70

xiv

6.2 Geomean speedups to compare different configurations of L1 and L2

prefetchers, replacement policies and cache inclusions. The configura-

tions compared are: L1 prefetcher, L2 prefetcher, replacement policy

and cache inclusion. The Y-axis shows the speedup over the baseline

configuration: no prefetchers, LRU replacement policy and a non-

inclusive cache. The X-axis shows the different cache configurations,

in order of: L1 prefetcher (l1p), L2 prefetcher (l2p) and replacement

policy (repl). 73

6.3 Geomean speedups to compare size sensitivity with different configu-

rations of L1 and L2 prefetchers, replacement policies and cache in-

clusions on a large cache configuration. The size of each cache level

is: 64KB L1, 512KB L2 and 2MB LLC. The configurations compared

are: L1 prefetcher, L2 prefetcher, replacement policy and cache in-

clusion. The Y-axis shows speedup over the baseline configuration:

no prefetchers, LRU replacement policy and a non-inclusive cache.

The X-axis shows the different cache configurations, in order of: L1

prefetcher (l1p), L2 prefetcher (l2p) and replacement policy (repl). . . 77

xv

LIST OF TABLES

TABLE Page

2.1 Inclusion policy properties. 23

3.1 State-of-the-art replacement policies and the inclusion policy. 34

3.2 L2 cache block classification in the CHAR algorithm. 46

4.1 SPEC CPU2006 memory intensive benchmarks. 49

4.2 CloudSuite benchmarks. 49

4.3 Multiprogrammed workloads mixes for simulating 4 cores. 49

4.4 Simulator configuration. 50

5.1 Model of an non-inclusive two-level cache. 57

5.2 Model of an inclusive two-level cache. 59

5.3 Model of an exclusive two-level cache. 64

xvi

1. INTRODUCTION

The size of transistors has kept decreasing thanks to technology improvements

and therefore increasing the number of transistors per chip as stated by Moore’s

Law [1, 2]. This led to add more complexity to the compute core in the chip to

improve performance (e.g. out-of-order execution) and include multiple levels of

cache memory to reduce the gap with memory latency by exploiting data locality.

Due to power density constraints, computer architects changed the way of de-

signing chips over a decade ago: increasing the number of cores per chip instead of

building more complex single-core chips [3]. The last-level cache (LLC), i.e., the level

closer to memory and further away from cores, is typically shared among all cores in

the chip. When shared, it stores blocks from all cores and is typically sized at about

1-2 megabytes (MB) per core. Increasing the number of cores requires a larger cache

to maintain high core performance.

There are several ways to manage how data is allocated in the multiple levels of

cache depending on whether a higher level (closer to memory) includes data resident

in lower levels (closer to cores). In inclusive caches, a data block present in a cache,

must also be present in all of its corresponding higher levels. To accomplish this,

every cache miss will allocate the data block read from memory in all cache levels,

including the LLC. At the same time, when a data block is evicted from a cache, the

block is invalidated in all of its corresponding lower levels. The result of this policy

is a lower effective cache capacity due to the data replication across cache levels, and

the potential performance and energy impact of inclusiveness-induced invalidations.

Non-inclusive caches attempt to reduce the limitations of inclusive accesses by

not enforcing inclusivity in higher cache levels. When a data block is accessed,

1

it is still allocated in all cache levels. However, an eviction on a cache does not

trigger invalidation in lower levels. There is still data replication, but there are not

inclusiveness-induced invalidations affecting performance and energy.

Exclusive caches go one step further by enforcing that a data block present in a

cache cannot be also present in a corresponding higher-level cache. To enforce this,

on a cache miss the block is sent to the lower levels and not allocated in the exclusive

cache. On a LLC hit, the block would be sent to the lower level and invalidated in the

exclusive cache. Only data evicted from lower levels is present in the exclusive cache,

a design known as victim cache [4]. The result is that there is no data replication

and, as a consequence, there cannot be inclusiveness-induced invalidations.

1.1 My Project

In this thesis we evaluate different prefetchers and replacement policies for the

three cache inclusion types: inclusive, non-inclusive and exclusive. We use single-

threaded applications for single- and multi-core (multiprogrammed workloads).

We use the ChampSim simulator, used in the 2nd Cache Replacement Cham-

pionship [5], to model the different cache configurations. The benchmarks will be

several traces from SPEC CPU2006 [6], CloudSuite [7] and one machine learning

workload trace from mlpack [8].

1.1.1 Objectives

The main objectives of this project are:

• Quantify the correlation between cache replacement, prefetching and cache

inclusion policies.

• Prove the need of having a different cache management technique depending

on the cache inclusion type.

2

1.1.2 Contributions

The contributions of this project to fulfill the aforementioned objectives are:

• A comprehensive evaluation of multiple cache configurations including multiple

replacement policies and prefetchers for all three inclusion policies: inclusive,

non-inclusive and exclusive caches.

• A discussion on the results targeting to understand the gaps in the design

of cache replacement policies to improve performance and reduce energy con-

sumption in the presence of a given inclusion policy.

1.2 Document Structure

Chapter 2 introduces the basics on cache hierarchy that are necessary to under-

stand on the following chapters.. Chapter 3 explains the state of the art on cache

replacement policies. Chapter 5 explains the implementation details of this project

and discusses the challenges that came up. Chapter 4 describes the methodology

used in the project. This includes the tools and the evaluation methodology. Fi-

nally, we conclude showing and discussing the results, the lessons learned and the

conclusions of this work. At the end, we propose different lines of future work.

3

2. BACKGROUND

The improvement rate of processor speed has been higher than that of memory

speed for a few decades, the so called memory wall [9]. It is necessary to develop

techniques to mitigate this performance gap. One solution was introducing several

levels of memory, also known as the memory hierarchy, to bring data closer to the

processor. There has been extensive research on improving memory management.

Specifically for the cache hierarchy, the memory between the processor and main

memory, the two most important topics have been prefetching and cache replacement

policies.

Prefetching aims to bring data to a cache level closer to the processor before the

data is requested. This reduces the latency on accessing the block if the prefetcher

was accurate (brought the data that was to be requested) and timely (the time the

data arrived to the cache made the accesses hit). However, prefetching can also

pollute the cache with blocks that are evicted before being used if it brings data that

will not be used or it is brought too late or too early, thus interfering with actual

useful data.

Replacement policies improve the management of cache contents to evict first

the blocks that are not likely to be used again to make space to the newly requested

blocks. They can also hurt performance if the block removed was still in use and is

requested shortly after.

Cache blocks that contain the data can be in either of the cache levels. The

inclusion policy decides in how many levels and where to keep each block. For

example, if we put the same block in all cache levels, the effective space of the cache

hierarchy would be reduced but it could be faster to access assuming the block would

4

still be in the next cache level.

In the following sections of this chapter, we introduce basic concepts of the mem-

ory hierarchy and techniques to improve its use.

2.1 Memory Hierarchy

Computer programs usually have memory access patterns that exhibit spatial or

temporal locality. Spatial locality refers to a memory access to a location most likely

will result in recurrent accesses to nearby memory locations. For example, when

accessing in order all elements in an array, where all the array elements are stored

consecutively in memory. Temporal locality refers to a memory access that will likely

result in another reference to the same memory location again in the near future.

For example, when in an array operation we need to read and then write on an array

several times.

Figure 2.1 shows an example of a memory hierarchy in a modern system. To

reduce the latency of bringing data from main memory to the processor, architects

exploited the spatial and temporal locality of programs with faster and smaller mem-

ories between the processor and the main memory. These small memories are called

caches. Typically there are two, three or four levels of cache, each one of a different

size and access latency. The closest level to the processor is typically called "L1",

for level 1, the next "L2", and so on. We will call the closest level to the processor

the lowest and the last one before the main memory the highest, i.e. the lower level

of L2 is L1. Typically, the L1 is divided in two: L1 data (L1D) and L1 instructions

(L1I).

The core also contains a few registers where all data in use is stored to compute

the current fragment of code (inside of CPU in Figure 2.1). This is a very small and

expensive memory, and it is the fastest one.

5

As a rule of thumb, the closer to the processor, the smaller the cache capacity

and latency. The latency of each element on the memory hierarchy depends on

different properties: its technology, its capacity and its distance to the core. The

different latencies at the different cache levels have to do with their implementation

in terms of logic and technology. Accessing larger data arrays require larger latency

because of more complex circuitry, such as large decoders/encoders, that involve

longer gate nets. At the same time, bit cells in on-chip caches are implemented

with 6 transistors (6T SRAM) for faster access although at higher power, while off-

chip memory is implemented with 1 capacitor bit cells (DRAM [10]) that loses its

charge and must be refreshed periodically for higher density (less area per bit) and

lower power consumption at the expense of latency and refresh cost. Also, on-chip

caches typically run at higher frequency. Some on-chip caches are implemented with

embedded DRAM (eDRAM) which provide higher density and low power at the

expense of latency. This eDRAM technology is applicable to LLCs because their

latency would be prohibited for caches closer to the core.

The basic unit for cache storage is the cache block. A cache block contains a

certain number of data bytes. Each cache level is organized in cache sets. A cache

set may contain from one block to all blocks of the cache. The data is placed in the

cache in a position that depends on its address. To identify which block of the set

we want, a tag is used as a unique identifier. Cache memories can be mapped in

different ways: direct mapped, set associative and fully associative. A direct mapped

cache places a block in a given position indexed by some bits of its address. Several

blocks can be mapped to the same position. In this mapping, each set contains

one single cache block. The fully associative cache places the blocks in any of the

positions available. In this case, one set contains all blocks. The set associative

cache is a compromise between those two: each set contains are a small number of

6

Figure 2.1: Diagram of the memory hierarchy in a modern processor. The higher

the capacity of the cache, the higher the latency to access a block in that cache. In

a multi-core, there are replications of the "core" part inside the "SoC" part.

7

ways (typically 2, 4, 8 or 16), each block being placed in the set that is chosen by its

address, and at any ways within the set.

A cache hit happens when a block is requested and it is currently stored in one

of the levels. A cache miss is when the block is not there on reference. On a cache

miss, to improve performance, a cache in a modern processor typically has special

registers called miss status holding registers (MSHR) where it stores information

about the block that missed while its requests to the next cache levels and memory

is resolved. A cache with MSHR is called a non-blocking cache. Keeping that

information in multiple MSHRs allows to have multiple cache misses being resolved

in memory and more load/store instructions in flight. This is called memory-level

parallelism (MLP), and allows overlapping latencies from multiple accesses and the

core to progress computation on instructions that are independent from those misses.

2.1.1 Miss Types

There are four different types of misses depending on the reasons that cause them:

compulsory, capacity, conflict and coherence. Compulsory misses are the ones that

are a miss because the execution of the program has just started and the caches are

empty. These misses are also called cold misses. Capacity misses occur because of

the limited cache size. These misses completely disappear with a sufficiently large

cache. Conflict misses occur because of the data mapping in the cache. In a direct

mapped cache, each block is mapped to a particular cache position. When placing a

block in the cache, the block in that position is evicted. A definition by Hill, "conflict

misses are misses that would not occur if the cache were fully associative with LRU

replacement". Coherency misses occur when private caches invalidate other copies

of their blocks in the cache hierarchy and subsequent accesses to those invalidated

copies miss.

8

There are several techniques to reduce these four miss types. Compulsory misses

can be reduced by a prefetcher that predicts which blocks are going to be used

and brings them to the cache before they are requested. However, prefetchers can

pollute the cache with data that is not going to be used if the predictions are wrong.

Compulsory misses can also be reduced by increasing block size. A larger cache

reduces capacity misses. A larger cache fits more blocks, but then latency may be

higher. Conflict misses happen because of the mapping, so with a higher associativity

it is less likely that a block that will be needed is going to be evicted. However, the

higher the associativity, the higher the energy, the slower and more complex the

cache. Coherency misses can be reduced by using a different coherence protocol, for

example one that updates the block at other caches instead of invalidating the block.

2.1.2 Load Flow

At the start of a program all cache levels are empty. Below there is an order on

what happens when the first load instruction executes in a 2-level inclusive cache.

From the cycle the load operation is selected to access the L1 cache:

1. In parallel:

• Decode the index of the L1 cache set with virtual bits

• Search the translation of virtual to physical in the translation lookaside

buffer (TLB)

2. There is a TLB miss, because that memory page was not accessed before

3. The page walker searches the page

4. If there is a page fault, the operating system (OS) causes an exception to bring

the page from disk to memory and stores the translation in the page table and

in the TLB

9

5. The instruction is re-executed

6. On the second access to the TLB, the physical address is found, and all tags in

the set are compared to that address, and if a block matches, it checks if the

block is valid

7. It is an L1 miss because the block was not accessed before and the prefetcher

is not trained yet

8. Find the victim block where the data will be stored in the L1 whenever it arrives

from memory (depends on the replacement policy) and update the state of the

replacement policy and prefetcher (if necessary)

9. The information about the instruction is stored in an MSHR of the L1 (assum-

ing there is one empty, otherwise we have to wait until one becomes free)

10. Decode the index of the L2 cache set

11. Check all the tags in the set and whether the block is valid

12. It is an L2 miss

13. Find the victim block where the data will be stored in the L1 whenever it

arrives from memory (depends on the replacement policy)

14. The information about the instruction is stored in an available MSHR of the

L2

15. Request to the memory controller to load the line that contains the required

data

16. The memory controller reads the line and sends the block back to the requester

L2

10

17. The cache controller receives the block and matches the address to the infor-

mation in the L2 MSHR

18. Evict victim block and write it to memory if it was dirty

19. The block is stored in the L2 and sent to the L1 (and repeats the steps for

block replacement as in the L2)

20. The data requested by the load operation is sent to the central processing unit

(CPU)

If the 2-level cache was non-inclusive, it would have been the same list and order.

The difference is in the exclusive cache: in the step 19, the block would not have

been allocated in the L2, only in the L1.

2.1.3 Write Policies

The cache hierarchy keeps data in some or all of their levels while the data

is in use. Modified data must be written back to memory at some point. There

are two main moments that a block can be written to memory: immediately or

before invalidation. These two write policies are called write-through and write-back

respectively.

A write-through cache writes the block to main memory immediately after writing

it to the cache data array. This is a simple implementation that does not require any

work at invalidation, but it requires to send the block to memory on every write. In

this case, cache blocks and main memory contain the latest and updated data. This

simplifies coherence (see subsection 2.1.4) but increases data movement.

A write-back cache only writes the block to main memory when it is evicted from

the cache. Meanwhile, the data in main memory is a stale copy. A write-back cache

is more complex as it requires one bit (dirty bit) to identify whether the block has

11

been modified -so called dirty block. If the block is modified, it needs to be written

to memory on eviction. If the block has not been modified -so called clean block, it

can be simply invalidated with no further action.

In both write policies, it is not defined what to do on a write miss. There are two

possibilities: either allocate the block "write allocate" or not, "write-no-allocate".

Write allocate loads the block that missed to the cache and then writes it. Write-

no-allocate writes the data directly to main memory bypassing the cache.

Any combination of write policies and write miss policies are possible. However,

there are two that are generally more efficient: write-back with write allocate and

write-through with write-no-allocate.

2.1.4 Cache Coherence

Modern microprocessors have multiple cores. Each core has at least one private

cache and there generally is a cache that is shared among all cores. Figure 2.3 shows

an example of a typical three-level cache hierarchy with two cores where the L3 is

shared among all cores, and L1 and L2 are private for each core. The same block of

data can be present in several private caches for multithreaded applications, where

different threads share data. For example, in a program with two threads, each

running in a different core, we can have the situation shown in Figure 2.2. If there is

no coherence, the last load miss will come from memory with a stale value because

the correct value is in thread 1’s private cache.

The two main techniques to solve this problem are invalidation and update. On

invalidation, only one copy of the block is allowed to exist at a time, whenever

another core requests that block, the previous is invalidated. On update, each write

to a block is also written to all other present copies of that block.

Multi-core processors implement these techniques atomically through a cache

12

1 Thread 1: load A (miss)
Thread 2: load A (miss)

3 Thread 1: write A (hit)
Thread 2 L1: load B (miss) --> invalidate A

5 Thread 2: load A (miss)

Figure 2.2: Cache coherence problem example.

Figure 2.3: Memory hierarchy in a multi-core processor.

13

coherence protocol. Each cache block has a coherence state to represent information

such as which and how many cores have the block and if the block has been modified.

The simpler state information would be for a single-core write-through cache, where

the only two states are: valid and invalid. In that example, all blocks are invalid first

and are marked as valid at a fill. On a write, the block is still valid and the main

memory is updated. Another simple state information would be for a single-core

write-back cache, with four states: valid, invalid, modified (dirty) and clean.

2.1.4.1 MSI Protocol

A simple cache coherence protocol is the MSI protocol. This protocol implements

the invalidation technique and is used in write-back caches. There are three different

states in this protocol: "M", "S" and "I". The "M" state stands for modified and is

equivalent to a dirty block. This state can only be held by one of the copies across

multiple private caches. The "S" stands for shared, this means that the block is valid

and clean. One or more copies of the block across multiple private caches can be in

this state. The "I" stands for invalid.

Cache coherence protocols are usually represented with a state transition diagram

that shows when and what triggers a transition from one state to another. Figure 2.4

shows the state transition diagram for the MSI protocol. The black arrows show the

actions (read/write) initiated by the core. The red arrows represent the requests

initiated by caches. There are two main transitions that cause several messages.

First, a block in the shared state that is going to be written by one of the cores

generates an invalidate message to invalidate all copies in other caches. Second, when

a core wants to read a block that is in modified state in another core’s private cache,

the modified block value is written to memory and transferred to the reading core

and both copies are set to shared state. This implies snoop or directory operations in

14

Figure 2.4: Simplified state transition diagram of the MSI cache coherence protocol.

the on-chip network to find the modified copy and transfer the modified block value

to the reading core.

2.1.4.2 MSI-Like Protocols

There have been multiple efforts to improve on the MSI protocol, mainly to

reduce coherence traffic. One of the issues in the MSI protocol is that every time

that there is only one copy of a block in the shared state and that the core wants to

modify it, it has to send unnecessary invalidation messages to the bus. The MESI

protocol improves on this case. The new state "E" stands for exclusive and means

that there is exactly one copy of the block at a time and it is clean. When a block

is filled for a read the first time, it transitions from invalid to exclusive. Then, when

the core wants to write the block transitions to modified without the need to send

15

invalidations to other because it is known that it is the only copy in the system. This

protocol significantly reduces coherence traffic when a block is private, i.e., accessed

by a single core.

Another issue in the MSI protocol is that every time that there is a read request

from a core of a block in the modified state in another core, the modified block must

be written to memory. The MOSI protocol adds the owned state, "O". A block

arrives to this state when a modified block receives a read request from another core.

The cache that had the modified block, so called the "owner", is the responsible to

respond and send the block to all read requests to that block and, later, to send the

value to memory before invalidation. The cores that receive that block keep the block

in shared state. This avoids writing the block to memory until the latest possible

moment.

The MOESI protocol puts together all the states used in the previous protocols.

This protocol improves performance by delaying the writes to main memory as much

as possible and by reducing unnecessary coherence messages when a block is only

referenced by a single core.

2.2 Inclusion Policies

A cache level is related to the previous or the next level (if any of those exist)

depending on which data blocks each level contains. A particular cache level can

contain exactly all, exactly none or some of the data blocks of the lower level.

An inclusive cache contains all data blocks of the lower level. An exclusive cache

does not contain any of the data blocks of the lower level. A non-inclusive cache can

contain some blocks from the lower level but not necessarily all or none. Figure 2.5

shows a diagram of each of the inclusion policies.

Each cache level can use a different inclusion policy. For example, the L3 can

16

(a) Inclusive (b) Non-inclusive (c) Exclusive

Figure 2.5: Diagram to show where the data is in an a) inclusive, b) non-inclusive,

and c) exclusive cache. The intersection is data duplication.

be exclusive of L2 while the L2 is inclusive of L1. All these inclusion policies have

their benefits and drawbacks, mostly related to latency, data replication and data

movement.

2.2.1 Inclusive

An inclusive cache level contains all data blocks from lower levels plus some

other blocks. Figure 2.5a shows a diagram of which data is in which cache, where

the intersection is data duplication. That is, a data block is replicated in both cache

levels.

In a 2-level cache hierarchy, the data block will be placed in both cache levels

on an L2 miss. If the block is evicted from the L1 and, later, a request comes (L1

miss), the data may still be in the L2, thus avoiding accessing main memory. On an

L1 eviction, only write backs of dirty blocks are required. If the block is clean, there

is no need to copy it back to the L2 because it is already there as per the inclusion

policy. A potential problem is on an L2 eviction: to preserve inclusivity, if the block

was present in L1, it must be evicted too.

In a multi-core system, this inclusion policy simplifies the coherence protocol im-

17

plementation. A cache wanting to invalidate copies of a block in other caches just

has to notify the LLC because it has the information of all blocks in all lower caches.

With this, there is no need for coherence message broadcasts, thus reducing complex-

ity and energy consumption. Also, coherence information (state and caches having

a copy) can be encoded with the cache block so the information is available when

accessing it, thus cutting latency of potentially having to access separate structures,

such as a directory.

Given that an inclusive LLC knows which lower caches have a block that is going

to be evicted, invalidation messages can be directed to those caches without the need

of broadcasting the message.

One disadvantage is the effective cache size due to data duplication. The effective

size of the cache hierarchy is the size of the LLC. For example, in a 2-level cache

hierarchy, the effective size is the one from L2 because it contains all contents from

L1. The L1 cache only keeps data closer but does not contribute with additional

capacity.

Another disadvantage is back invalidations. An eviction from the LLC can gen-

erate an invalidation in an L1. If it was present in the L1, the block may be in

use. This can be a problem if the replacement policy is not aware of the usage of

a block in the lower caches. Jaleel et al. claim that the limited performance of an

inclusive cache comes from back invalidations because the LLC replacement policy

is not aware of the core presence of blocks and their recency [11].

A related problem is that an inclusive cache has less flexibility to improve cache

management due to the impossibility of bypassing the LLC to maintain inclusivity.

E = cn (2.1)

18

Equation 2.1 shows the calculation of the effective cache capacity in a cache

hierarchy with inclusive LLC, where E is the overall system effective cache capacity

and n is the number of cache levels, thus cn being the capacity of the LLC.

2.2.2 Exclusive

An exclusive cache does not include any replicated block from lower levels. Fig-

ure 2.5c shows a diagram of the data blocks of each cache level in an exclusive cache.

In this case, there is no overlap and the intersection of the two sets is empty, so

there is no data replication. This inclusion policy increases the total amount of data

blocks that can fit in the whole cache hierarchy.

The exclusive inclusion policy is similar to a victim cache [4]. In a three-level

cache hierarchy, the LLC would be the victim cache of a two-level cache. Victim

caches contain the evicted blocks from the lower levels aiming to reduce conflict

misses. This was originally introduced as a fully associative small cache to reduce

conflict misses from direct-mapped caches.

However, it incurs higher complexity. In the example of two cache levels (L1 and

L2), when a block that is in L1 (and not in L2) is evicted, it will be allocated in

L2. When the block is accessed again, it will be invalidated in L2 and allocated in

L1. This generates more work to do on an L2 hit. Also, it makes impossible to use

the recency of a block to choose which block to replace when the L2 cache is full,

as it only contains data that was evicted from L1 and not accessed again since that

eviction.

Jouppi and Wilton identified the benefits of exclusive caching and evaluated

them [12]. They found that the extra space of not duplicating the data in the

two levels of cache and a higher associativity in the LLC was indeed beneficial. Ten

years later, Zheng et al. evaluated the performance of exclusive cache hierarchies

19

with respect to inclusive caches [13]. They found that exclusive caching is benefi-

cial for most of the benchmarks they tried (SPEC 2000), but especially for smaller

lower-level caches. They suggest that exclusive caches are more suitable for server

applications and embedded systems.

The main benefits when using exclusive caches are:

• Less conflict misses by behaving like a higher associativity cache, as two mem-

ory references that are mapped to the same set can reside one in each level

instead of only one.

• Higher hit rate thanks to a higher effective space by avoiding the blocks dupli-

cation in different levels. This is especially relevant in caches with more than

3 levels of cache or with large lower level caches.

• Avoids premature evictions from the lower levels of cache by not requiring back

invalidations, like in an inclusive cache policy.

The main drawbacks and limitations of an exclusive cache are:

• Less design flexibility because the block size of the exclusive cache has to be

the same as the other cache levels.

• More control complexity and power consumption due to the higher data move-

ment of blocks from one level to the other.

• More complex cache coherence protocols and more area required in symmet-

ric multiprocessor (SMP). This is only important for multithreaded programs,

which is not the case of this thesis work.

Equation 2.2 shows the effective capacity of an exclusive cache, being E the

effective capacity, n the number of cache levels, and c the capacity of a cache level.

20

The higher effective capacity is one of the most attractive features of an exclusive

cache. For this same reason, exclusive caches have been investigated in other fields,

such as in storage to reduce the impact of the high usage of cache RAM in disk

arrays [14].

E =
nX

i=1

ci ,
(2.2)

2.2.3 Non-Inclusive

A non-inclusive cache level may or may not contain blocks from lower levels.

Figure 2.5b shows a diagram of one possible case in a non-inclusive cache, where just

some blocks from L1 are also in L2. The data is replicated when there is a miss in

a cache level, and the block is allocated in that cache level and all higher ones. For

example, in an L1 miss where the block is in none of the caches, the block will be

allocated in L2 and L1. The difference with an inclusive cache is that the inclusivity

is not enforced. That means, when a block is evicted from a higher level, it does not

generate back invalidations to the lower levels. This simplifies the implementation

of this type of caches.

The main advantages that can be gained by forcing non-inclusion are a higher

effective cache and lower conflict misses. The effective cache size is higher compared

to an inclusive cache. In the best case scenario, the effective cache size is the sum

of all caches, like in the exclusive case (see Equation 2.2). That is the case when all

cache blocks present in the L1 have been replaced in the L2. However, the worst-case

scenario is when none of the L1 blocks have been evicted from the L2, equivalent

to an inclusive cache (see Equation 2.1). The cache hierarchy usage in a case with

non-inclusive cache changes depending on the application and replacement policy.

21

Conflict misses will be reduced in the intermediate or last-level cache. The blocks

that are referenced frequently stay in L1, therefore L2 has space for other blocks.

One disadvantage of non-inclusive caches is coherence. A non-inclusive LLC that

needs to evict a block will have to ask all the lower level caches if they have the

block, because that information is not present in the LLC, unless a separate direc-

tory is implemented and then it must access the directory and pay its extra latency.

If the block is present in any lower-level caches, it needs to be invalidated or up-

dated. However, there has been work to separate the cache coherence structures (i.e.

directory) from the data blocks of the cache. Zhao et al. proposed a non-inclusive

cache with an inclusive directory to keep the positive features of both inclusive and

non-inclusive policies [15].

2.2.4 Summary of Inclusions

Table 2.1 shows a summary of all the inclusion policies explained previously in

this section.

Modern processors use different types of inclusion policies in each level of cache.

The most common is to either use an inclusive or an exclusive policy in the LLC and

an inclusive or non-inclusive in the lower levels. Below there are a few examples of

real processors with the information on the inclusion policy they use. None of the

ones covered here has a non-inclusive LLC.

For example, AMD processors generally use an exclusive last-level cache and

Intel, an inclusive one. The AMD Athlon (from the Thurderbird architecture) had an

exclusive L2 (LLC), while its rival at the time, the Pentium 4 (from Willamette) [16]

had inclusive L2 (LLC). Currently, the latest AMD Zen architecture has a (mostly)

exclusive L3. Current Intel processors like Sandy Bridge, Ivy Bridge and Skylake

have an inclusive L3 and a non-inclusive L2 [17]. The Intel Knights Landing has an

22

Inclusive Non-inclusive Exclusive
Data * " None

replication

Benefits Simple coherence, Simple to Highest effective

no copy back necessary implement capacity

Drawback Wastes cache space, Data replication More complex on

back invalidations on a miss, an LLC hit

complex coherence

Replacement Core-aware problem Simple Heuristic problem

policies (no recency,

frequency info)

Table 2.1: Inclusion policy properties.

L2 (LLC) that is inclusive of the L1D and non-inclusive of L1I [18].

The ARM Cortex-A9 can have an (optional) L2 cache(LLC). The core has support

to be attached to exclusive L2 caches as long as that is properly configured both in

the core and L2 controller sides [19].

The processors in the IBM POWER series had mostly L3 (LLC) exclusive caches.

The POWER5 has an L3 exclusive and an L2 inclusive of both L1D and L1I [20]. The

POWER6 has an L3 exclusive cache and the POWER7 has an L3 mostly exclusive

cache [21]. The IBM zEC12 has an inclusive L3 (on die) and an inclusive L4 (off-die,

on-package) [22].

2.3 Replacement Policies

To reduce the gap of memory and processor performance, computer architects

designed caches to bring in-use data nearer the processor. One of the important

design decisions in a cache is the replacement policies. Caching and replacement

23

policies have been researched in different fields such as systems [23, 24, 25, 26, 27]

and databases. In this thesis we only consider caches in the memory system.

Cache replacement policies are algorithms to improve cache management. They

are used when the cache is full and a new block has to be allocated: the algorithm

chooses which block to evict from the cache to place the new one.

The best algorithm would be to evict a block that is no longer going to be used

in the future. This is only possible with knowledge of the future. Belady proposed

an optimal cache replacement algorithm assuming knowledge on the future [28]. As

a processor does not have such knowledge, there has been plenty of work in cache

replacement algorithms.

A naive algorithm would be to choose a block at random and replace it. This is

easy to implement but not generally effective, as it evicts a block that me be in use.

There has been plenty of work to improve this algorithm trying to evict the least

useful data. One way to improve cache management would be to decide based on

how recently the block has been accessed, like least recently used (LRU). Another

way is using machine learning to learn from the past accesses and make a prediction

of which blocks will likely be accessed again.

Cache blocks can be accessed in many different patterns. A technique that has

been used to adapt cache management to different patterns depending on the appli-

cation is set dueling [29]. Set dueling uses different replacement policies on a few

cache sets and compares their performance. The best replacement policy across the

compared sets is used for the rest of the cache.

A replacement policy can maintain information on the blocks to later decide

which block to evict. There are two main cache operations that trigger actions in a

replacement policy: the placement (or insertion) of a new block into the cache, and

the promotion (or update) of an existing cache block. On placement, the replacement

24

policy can statically or dynamically decide the initial value of the information to

keep with the inserted block. If the cache if full, the placement also triggers the

replacement algorithm to choose which cache block to evict. A cache hit typically

triggers a promotion of the accessed block. Usually, the replacement policy will

mark the block to be more protected of eviction than it was before. The replacement

policy can also implement a bypass policy. This means that the cache block that

was going to be placed in the cache might be predicted not to be used before its

eviction. In that case, the block is considered dead and it is not placed in the cache,

but forwarded to the next level.

2.3.1 LRU

The least recently used (LRU) is a simple and intuitive replacement policy that

is often used as a baseline to compare other policies. This replacement policy evicts

the cache block that has not been used for the longest time. This policy has been

implemented to exploit temporal locality, given that a block that has been used

recently is likely to be reused soon. However, that is not always the case. Some

applications do not have such high temporal locality, for example, a large data set

that does not fit in the cache and it is accessed many times from the first to the last

element. In that case, by the time the first element is accessed again, it would have

been evicted from the cache as it was the least recently used block.

The LRU policy keeps the information per block on the order that the blocks of

a set had been accessed. For example, in an 8-way set associative cache, the blocks

will be ordered from zero to seven, being zero the most recently used position and

seven the least. The placement of a block in the cache is set to position zero because

is the block that has just been accessed. On a cache hit, for example, to a block in

position four, the block is also set to position zero. All other blocks’ positions are

25

recalculated. On a fill that triggers the replacement of a block, the victim block will

be the one in the LRU position, position 7 in this example.

This replacement policy requires to store a considerable amount of bits per block

and to recalculate the position and update it for each cache block in a set. This

is very costly. For this reason, an approximation of this replacement policy has

been proposed: the Pseudo-LRU (PLRU). PLRU is commonly implemented as a

tree making the number of bits to store and modify to be small. PLRU is beneficial

compared to LRU for large cache associativities. There are many other heuristics

around the access recency or frequency such as most recently used, not recently used,

least frequently used, not frequently used.

2.4 Prefetchers

Cache misses are a common reason for CPU stalls in computers. Prefetching,

in conjunction with other techniques, such as replacement policies, is one effort to

to reduce these stalls by predicting misses and issuing a memory request before the

actual access occurs. Prefetching is a technique used to hide memory latency by

bringing data that will potentially be needed by the processor to a closer level of

the memory hierarchy. Prefetching can be done either for instructions or for data.

Also, it can be implemented in hardware, software or a combination of both. There

is, however, the risk of polluting the cache when the prefetched data is not used due

its eviction before use or wrong prediction.

There are several prefetching approaches proposed in the literature contained in

two categories: hardware and software. Software prefetching consists in adding in-

structions to the program to fetch data ahead of its use. They do not speculate on

data but add instruction overhead. Contrarily, hardware schemes do not require pro-

grammer or compiler intervention and incur no instruction overhead. However, they

26

may mispredict the next data to be accessed causing cache pollution and additional

traffic and power consumption.

Hardware prefetching can be classified in two categories: spatial and temporal.

Spatial schemes use accesses to the current blocks as the basis for prefetch deci-

sions. Temporal schemes use lookahead decoding of the instruction stream to decide

what and when to prefetch [30]. Due to the greater complexity of the data access

pattern compared to instructions, data prefetching techniques are more diverse and

thoroughly researched than instruction prefetching techniques.

There are three main types of hardware prefetching: address correlated, spatially

correlated and execution based. Address correlated prefetching relies on identifying

address correlations of previous misses. These prefetchers predict that a sequence

of accesses happening close in time are likely to be accessed together in the future.

These prefetchers work well to exploit the patterns of algorithms that traverse data

structures such as linked lists.

The spatially correlated prefetching exploits the regularity and repetition in data

layout. Data structures and objects have a fixed layout in memory and is frequently

aligned to cache lines. The same layout patterns are often similar for other objects

in memory. The regularity of the layouts and the reusability of the patterns makes

this prefetching technique effective also to reduce cold misses. One common special

case is the sequential and stride prefetching. Stride prefetchers exploit the spatial

locality by prefetching, for example, the next contiguous block. These prefetchers

can be tuned to work for a different stride (e.g. instead the next block, the fourth

next block) and to identify multiple strides.

The execution-based prefetching executes the program’s memory accesses ahead

of the actual execution so data is brought closer ahead of time. Execution-based

prefetching seek to access earlier the exact addresses that are going to be accessed

27

later. It does not speculate to decide which addresses to prefetch. Prefetches are

known to be useful because the program had already executed or will execute them in

the future. This is achieved by using spare resources to execute future instructions or

by adding extra hardware to the memory hierarchy to monitor which of the evicted

addresses might be needed.

In the rest of this section, the prefetchers used in our experiments are described.

2.4.1 Next-Line

The code is stored sequentially in memory and many instructions are accessed

consecutively. This prefetcher exploits these two characteristics and simply brings

the cache line that is stored after the one that has been accessed. Next-line is

a prefetching technique for bringing the next consecutive cache block [31]. This

prefetcher works specially well for instructions, but also for applications with high

spatial locality.

This prefetching technique has been extended to a variable number of cache lines

to be prefetched. In terms of instructions, it can be adapted to recognize and prefetch

entire basic blocks.

2.4.2 Instruction Pointer-Based Stride

Stride prefetchers aim to remove compulsory and capacity misses. These prefetch-

ers predict that, when an access to a memory address is missed, another memory

access to an address that is the same plus an offset will be likely accessed and missed

in the future. Stride prefetchers generate a cache allocation of the predicted block.

If the block is prefetched and accessed (hits), it is a useful prefetch. Therefore, stride

prefetchers are not only configured to prefetch on miss but also to prefetch on hit.

This pattern is usually regular within the multiple execution of the same static

instruction. For this reason, stride prefetchers are typically implementated to track

28

information per instruction pointer (PC). The tracked information includes the next

address to be prefetched and the identified stride [32]. They also typically include a

degree and distance. The degree is how many prefetchers an access by the instruction

at the corresponding PC triggers, and distance is how far ahead it starts prefetching,

i.e., a distance of one would prefetch address + stride, while a prefetch distance of

N would prefetcher address+ (N ⇥ stride).

2.4.3 Best-Offset

Offset prefetching is a generalization of the next-line prefetcher, where an offset

can be specified. In next-line, the offset would be one. But bringing the immediate

next line is not always the best case for all applications. The access patterns can be

different and, therefore, dynamically adjusting the best offset improves the usefulness

of the prefetcher. Another problem is timeliness. Prefetching a block late may still

improve performance but in a smaller scale. Bringing a block with a higher offset

may guarantee that the prefetch arrives on time.

Michaud proposed the Best-Offset Hardware Prefetching [33] (BOP) to solve these

two problems. He implemented a learning algorithm that tries different offsets and

uses the best. BOP has a table to store the base address of the recent prefetched

requests that BOP tried (recent requests table or RR) plus an offset list and a

score table. During the learning phase, BOP tests an offset and updates the score

for some L2 read accesses depending whether it was a hit or a miss in the recent

requests table. Whenever all offsets in the list have been tested, they start again

until a certain number of iterations of this process. The offset with the highest score

is the one chosen.

29

2.4.4 DRAM-Aware Access Map Pattern Matching

Dynamic RAM (DRAM) is a type of memory cheaper than the one used for

caches, so it is typically used for a larger capacity. The main application of DRAM

is the computer’s main memory, which is the memory that is between storage and

the cache hierarchy. The DRAM is divided in multiple banks, which can be accessed

in parallel. Each bank is composed of many rows. Whenever a row has to be read or

written, the row has to be activated and brought to a row buffer. The read or write

operations are done to the row buffer. The latest DDR devices limit the number of

activations during a time window. Optimizing the use of the row buffer will improve

performance if the limit is not enough.

One problem of prefetching techniques in DRAM is that when two cores are

prefetching different blocks, if those accesses go to the same DRAM bank, they

will be activating and deactivating the row buffer, resulting in ping-pong effect that

prevents any of the cores being able to enjoy row buffer locality. This is in contrast

to the case where one of the cores sends the prefetches alone and all those prefetchers

accessing the same row get row buffer hits. If those prefetches are interleaved with

prefetchers from other core to the same bank but different rows, those row buffer

hits will become row buffer misses given the interference between the different core’s

prefetchers.

Ishii et al [34] proposed a prefetching technique to exploit locality in DRAM

called DRAM-aware access map pattern matching (DAAMPM). Before the time the

prefetch is going to be used, they suggest to wait and reorder the prefetch requests to

optimize row activation. The prefetches are reordered in a way that all blocks that

need to access the same row are done together. To implement this, they maintain

a memory access map data structure that tracks memory locations accessed in the

30

recent past.

Another problem they identify is that many replacement policies are not aware

about which blocks in the cache are allocated by prefetches or by demands. Most

replacement policies promote a block on a hit to protect it from being evicted. How-

ever, a prefetched block should not be considered as a hit the first time it is accessed

in that context, otherwise we would be promoting all blocks that have been only used

once and might be dead. A solution would be to add a prefetch bit per cache line

that is set to one when the prefetched block is filled to the cache. Whenever there

is a hit to that block, the replacement policy will not promote the block but will

set the prefetch bit to zero. However, adding an additional bit to all cache blocks

in the last level cache would be very costly. For this, the authors also propose a

prefetch-aware cache line promotion [34] (PACP). The idea is that the core issuing

a demand access after a prefetch includes a bit to specify that the accessed block

should not be promoted, as it has only been accessed once after the prefetch.

2.4.5 KPC

There has been extensive research in cache management, in both cache replace-

ment policies and prefetchers. The efforts, however, have mainly been made sepa-

rately. There has been little work on studying their interaction and their effect in

each of the cache levels [34, 35, 36]. Those studies show that the benefit of replace-

ment policies can be small or negative when combined with a prefetcher.

Kim et al. proposed a holistic approach to speculatively manage all cache levels

with coordinated prefetcher and replacement policies [37]. This approach aims at not

only improving performance but also reduce the overall hardware budget necessary

for the combination of prefetcher and replacement policy.

They found that the interference between prefetchers and replacement policies is

31

higher with PC-based replacement policies such as SHiP [38]. Thus, they propose

kill the program counter (KPC), an integrated cache management that consists on a

prefetcher and a replacement policy components. Both components learn from each

other to improve their efficiency.

The prefetcher component, which they call KPC-P, is a prefetcher that decides

in which level of the hierarchy to prefetch each specific block. They use a signature

table to store a compressed history of past L1 misses. The history is used as a

signature to index a pattern table to predict the next block. The predicted block

plus the previous history generates another signature which is again used. This

technique has an initial training phase that sets a confidence value that is increased

as prefetchers are useful. Later, prefetchers are only triggered if confidence on the

prediction is high.

The replacement policy component, which they call KPC-R, is a low-overhead

replacement policy that uses two global hysteresis to predict dead blocks by tracking

global reuse behavior. One hysteresis is for cache demands and, the other, for cache

prefetches. KPC-R has a few sampler sets in the LLC managed with true LRU and

the rest of the cache uses a similar SRRIP (explained in a following section 3.1). The

hysteresis is decremented on a cache hit in one of the sampler sets. The hysteresis is

incremented on a sampler miss when the victim was never used. When the hysteresis

is saturated high, accessed blocks are predicted to be dead.

Single-core simulations show KPC to achieve a 9.2% geometric mean speedup

over the baseline DAAMPM with LRU. That is a 5% higher than SHiP and 5.8%

higher than PACMan [36] and 8.1% higher than UMO [34]. Multi-core simulations

show that, on average, KPC achieves a 14.1% speedup over the baseline. That is

8.1% higher than SHiP. KPC outperforms the other cache management techniques

in most of the multi-core mixes.

32

3. RELATED WORK

Current processors invest significant amounts of area and power on prediction

mechanisms. Replacement policies is one of the most significant predictors together

with cache prefetchers and branch predictors. There has been extensive research on

cache replacement policies and it has mostly been focused on the last-level cache

(LLC) to minimize the highest cache miss penalty when a request has to access main

memory.

This chapter describes several state-of-the-art replacement policies, some of which

are used in our evaluations. Research in replacement policies has been focused on

non-inclusive and inclusive caches. Table 3.1 shows a list of all replacement policies

that are explained in this chapter and the inclusion policy the authors used to eval-

uate it. There has been mostly just two efforts in exclusive caches, and both from

the same authors.

3.1 Re-Reference Interval Prediction

The LRU replacement policy predicts that blocks will be referenced in the near-

immediate future. However, not all applications show this behavior, some are ref-

erenced in the distant future. For example, when accessing to a large working set

(thrashing) and when having bursts of references to non-temporal data (scan).

Jaleel et al. proposed two techniques for re-reference interval prediction (RRIP) [39]:

a static technique that is scan-resistant —static RRIP (SRRIP)— and a dynamic

technique using set dueling that deals with scan- and thrash-resistant applications

—dynamic RRIP (DRRIP). To implement this and decide which block to replace,

they use a re-reference prediction value (RRPV) per cache block. An RRPV of zero

means that it is predicted that the block will be referenced in the near-immediate

33

Inclusive Non-Inclusive Exclusive

RRIP X

SDBP X

SHiP X

GIPPR X

MDPP X

EAF X

Perceptron X

KPCR X

Hawkeye X

Bypass and Insertion X

CHAR X X

Table 3.1: State-of-the-art replacement policies and the inclusion policy.

future, and the saturated value, in the distant future. We will assume here that the

RRPV has two bits (values from 0 to 3), where: 0 is the near-immediate; 1 is the

near; 2 is the long; and 3 is the distant future.

SRRIP inserts a new block with an RRPV of two, so the block is not immediately

in danger of eviction. The victim that will be evicted is a block with an RRPV value

of three. if there is none, all RRPV are incremented until it finds an RRPV of three.

To promote a block on a hit, they propose two algorithms: hit promotion (HP) and

frequency priority (FP). In hit promotion, the RRPV is set to zero, predicting a

near-immediate reference. In the frequency priority, the RRPV is decremented, so

the more hits to a block, the lower RRPV value will be.

DRRIP uses set dueling to decide among two policies using a few sampler blocks

and choose the policy with fewer misses. The two policies that it compares are SRRIP

34

and bimodal RRIP (BRRIP). BRRIP inserts with a higher probability a block with

a distant re-reference (RRPV of three) and, with a lower probability, inserts with

a long re-reference (RRPV of two). BRRIP helps to keep some of the working set

on the cache in thrashing applications. They also propose a thread-aware version of

DRRIP which uses a set dueling monitor for each application that access the shared

last-level cache.

They did not use prefetchers. They modeled a 3-level cache hierarchy with a

LLC inclusive. They found that in SRRIP, the best insertion policy is an RRPV of

two, to predict a long re-reference. SRRIP-FP improves 4% over LRU on average.

SRRIP-HP improves 5% over LRU. DRRIP outperforms SRRIP by 5%. In a 4-core

processor, SRRIP does not degrade performance of any workload and gets an 7%

improvement over LRU, and Thread-Aware DRRIP improves it by 10%.

3.2 Sampling Dead Block Prediction

A cache block is defined as live from the moment a block is allocated in the cache

until the last reference to that block before eviction. A block is considered dead from

the last reference until its eviciton. Dead blocks unnecessarely occupy cache space.

To improve cache efficiency, dead blocks should be replaced from the cache as soon as

possible. The replacement policy should choose those blocks first instead of waiting

for their eviction in their replacement technique. For example, in an a cache with

an LRU replacement policy, imagine a read request that hits in the cache so it is the

last access to that block. The block is now in the most recently used position and it

will take evicting a few other blocks before it reaches the LRU position.

Khan et al. proposed sampling-based dead block prediction (SDBP) to predict the

blocks that are dead in order to improve replacement policies and bypass techniques

designed for LLCs [40]. They use a sampler to reduce cache metadata, instead of

35

adding additional state information to all blocks. They proposed to sample program

counters (PCs) to predict the blocks that are likely to be dead. Their sampling

predictor reduces the additional cache metadata necessary compared to other dead

block predictors and outperforms them. Each access to the cache, like in similar

approaches, generates an access to the predictor but the predictor is only updated

on a cache operation to one of the sampler sets.

In the sampling predictor, the sampler keeps an array with partial tags of a

reduced number of sets in the LLC. They implement a true LRU replacement policy

and used a smaller associativity in the sampler blocks.

The predictor has three tables of 2-bit saturating counters that are indexed by

the signature (a partial tag). The tables are accessed by hashing the PC of the

instruction that generated the memory access. The difference on the tables is that

they use a different hash function to index them. On a hit, the value of the tables

corresponding to that block is decremented, and on an eviction, incremented. An

access to the predictor will access the three corresponding counters of the tables

and compute the sum of the values that is then compared to a threshhold. If the

predicted value is higher than the threshold, the block is predicted dead. The same

implementation of this sampling predictor works for single-thread and multi-core

workloads.

They evaluated their dead block predictor to improve an LRU replacement policy

and bypass with single-threaded benchmarks. Their approach reduces average misses

by 11.7% over LRU compared to 18.6% of an optimal policy. This miss reduction

translates into better performance, particularly a geometric mean speedup of 5.9%.

For multi-core workloads in a shared LLC, their sampler achieves a geometric mean

speedup of 12.5% compared to a 4.5% of RRIP.

36

3.3 Signature-Based Hit Predictor

Wu et al. propose signature-based hit predictor (SHiP), a hit predictor to improve

replacement policies that use the re-reference interval such as RRIP [38]. They

improve the performance of these policies by predicting which blocks are likely to be

hit again before eviction (live blocks). This approach is similar to SDBP but instead

of predicting dead blocks, they predict alive blocks and protect them from eviction.

RRIP inserts a block with RRPV value of 2, while the ones in danger of eviction are

the ones with a value of 3. SHiP sets the RRPV to 1 when a block is predicted to

be alive (not dead), thus better protecting the block from eviction.

SHiP is implented similarly to SDBP: it has a table of 3-bit saturating counters

indexed by a signature of the block (partial tag) instead of three tables of 2-bit satu-

rating counters. The counters are incremented on a cache block hit and decremented

on an eviction of the block. A high value of the counter predicts that the block is

likely to be hit again with a higher confidence, depending on a specific threshold.

SHiP achieves a performance improvement of 9.7% on average over LRU while

SDBP achieves 6.9%. For a shared LLCs with multi-core workloads, SHiP improves

by an average of 11.2% over LRU while SDBP improves 5.6% and DRRIP 6.4%.

3.4 Minimal Disturbance Placement and Promotion

LRU is the widely accepted replacement policy which maintains a recency stack

giving the distinct position of blocks. But it is not useful for last level caches with

more associativity and worksets with low reuse.

A tree-based pseudo least recently used (PLRU) is a feasible implementation

that approximates LRU. The blocks are ranked in positions from the most recently

used to the approximately least recently used. There are multiple state-of-the-art

replacement policies that improve performance over PLRU. However, the low hard-

37

ware budget and the low complexity for promotion required to implement it, makes

PLRU useful in some cases. For example, for an L1 cache which benefits from the

low complexity.

Jiménez proposed genetic insertion and promotion for pseudo-LRU replacement

(GIPPR) [41]. GIPPR adapts to the best insertion and promotion policy using

set dueling, replacing the static and default PLRU insertion and promotion. The

algorithm finds the best insertion and promotion vector (IPV), which is a vector

that specifies which position the current block should be promoted to depending on

its current position. The best IPV is searched by applying a genetic algorithm over

random strings of IPVs. This IPV is then used over the tree-based PLRU replacement

policy. This algorithm still gets the PLRU low hardware overhead but can match

state-of-the-art replacement policies’ performance.

Teran et al. proposed minimal disturbance placement and promotion (MDPP),

to also modify the PLRU to keep the benefits from PLRU and match state-of-the-

art replacement policies’ performance [42] but being simpler than GIPPR. In PLRU,

whenever a block is placed or promoted, usually, many of the other block’s position is

going to be changed (promoting a block to MRU will demote many other positions).

The main idea relies on disturbing the position of those other blocks the least. For

example, a block in the third position out of 16 that hits, it is probably going to

be reused again soon, so we can leave it in position three instead of changing the

positions of all other blocks.

They proposed to place the block in position 3 ⇥ n/4, where n is the number

of ways of the cache level. That is the most protected position of the pseudo least

recently used part of the tree. For example, in a 16-way set associative cache, the

block will be placed in position 12, only the positions 12-15 will be disturbed, which

were the ones in most danger of being evicted.

38

To promote blocks on a hit, they propose a vector that links the old with the

new position to decide what position the block should be promoted to depending on

the position that the block was before. In the 16-way associative example, the first

half of the positions (from 0 to 7) are not promoted, assuming that the block will be

referenced again in the near future, so we avoid disturbing any other position. The

second half of the positions (from 8 to 15) promotes the blocks to the first positions

(0-3) predicting that the block has a long re-use distance, thus promoting the block

to the most protected positions.

They also propose a dynamic version of this placement and promotion algo-

rithms using the sampling-based dead block prediction (SDBP). They use the dead-

block prediction to decide placement and bypass. For the placement, they check

the confidence value returned by the dead-block predictor and place the block in a

different position depending on the confidence, but always without disturbing the

most-protected half of the tree.

Their static version with single-threaded workloads achieves an average speedup

of 2.5% over LRU and 5.3% with multiprogram, which is comparable to SRRIP.

Their dynamic version using dead block prediction achieves a 5.4% speedup over

LRU for single-thread and 14.3% for multiprogram, comparable to SHiP. They show

that their low-overhead implementation matches state-of-the-art cache replacement

policies’ performance.

3.5 Evicted Address Filter

Two main problems in cache management are: cache pollution, not-useful blocks

that replace blocks with high locality, and cache thrashing, blocks with a high reuse

but long reuse distance that replace each other. Previous work on replacement

policies explored mechanisms to mitigate both cache pollution [43, 44, 45, 38] and

39

cache thrashing [29, 46, 39, 47] problems.

Seshadri et al. claimed that none of those previous efforts have been effective in

preventing both cache pollution and thrashing at the same time [48]. The authors

introduced a simple mechanism to predict reuse behavior of cache blocks and also

prevent cache thrashing and pollution. Their solution utilizes a structure called

evicted address filter (EAF) which keeps track of addresses that were recently evicted

cache blocks. It predicts a high reuse when a block that misses was present in the

EAF. When a block is missed in the cache and found in the EAF, then it is placed at

MRU position in the cache. In case the block is missed in EAF, a bimodal insertion

policy is used for the placement [29]. In order to reduce the hardware overhead,

the authors proposed to implement EAF using a Bloom filter [49] to store recently

evicted addresses.

They used a 3-level cache hierarchy, with a non-inclusive cache in all levels. For

single-core, they simulated SPEC CPU2000, SPEC CPU2006, 3 TPC-H queries,

TPC-C server, Apache webserver and D-EAF (EAF using Bloom filter). Their ap-

proach performs 7% better than LRU in terms of IPC. For multi-core simulation,

the weighted speedup is 15% over LRU and 8% over SHiP.

3.6 Perceptron Learning for Reuse Prediction

Different applications behave differently and have different memory access pat-

terns. Even a single application has different phases during its execution, where the

patterns can also change. Machine learning has demonstrated to be useful in learn-

ing those patterns and to predict the next expected behavior, for example, in branch

prediction [50]. Perceptron is one of the algorithms used for binary classifications to

decide if something is going to happen [51].

Teran et al. proposed using the perceptron learning algorithm to predict the reuse

40

of a block [52]. In state-of-the-art techniques such as SDBP and SHiP, they use a

single feature to make the prediction. However, the use of multiple features, such as

the PC, some bits from the memory address and the trace of memory instructions,

can be used to improve the accuracy of the reuse prediction. These features train a

distinct table of saturating counters which is then summed. If the sum exceeds the

threshold, the block is predicted not to be reused, and it is bypassed from the cache.

The correlation of each feature with the reuse of the block is calculated by training

the perceptron tables for each feature.

This technique used a sampler and six tables for prediction, each one with 3-bit

saturating counters. The hardware overhead is 10.75 KB which is less than other

state-of-the-art replacement policies: SHiP has 11.25KB of overhead and SDBP,

11.06KB. The original SDBP and SHiP studies did not include prefetching. However,

this technique was evaluated using stream prefetching.

For single-thread workloads, reuse prediction achieves a geometric mean speedup

of 6.1% compared to 3.8% for SHiP and 3.5% for SDBP. For multiprogrammed

workloads, the geometric mean normalized weighted speedup is 7.4% compared to a

4.4% for SHiP and 4.2% for SDBP.

3.7 Hawkeye

Most of the research on cache replacement policies is based on heuristics, such as

LRU. Those heuristics are used when they get good performance on most programs,

but never all of them. LRU might be the best for a few benchmarks and then, MRU

for others. This happens with more complex algorithms as well, each heuristic-based

replacement policy works better for a set of access patterns but not in others.

Akanksha and Lin proposed Hawkeye, a cache replacement policy based on Be-

lady’s algorithm instead of on heuristics [53]. They proposed to use Belady’s algo-

41

rithm [28] on past cache access to decide the future behavior of the cache blocks.

They define as OPT the decisions made by Belady’s algorithm. The idea behind

their approach is to look at a long past history of cache accesses and decide by

predicting which cache lines will probably hit. They do that by checking whether in

the OPT solution a load instruction brought lines that hit, and those are predicted

to hit in the future too if the block stays in the cache.

They evaluated Hawkeye with the SPEC CPU2006 benchmark suite and the

CMP$im simulator. Their model has a three-level cache hierarchy that is non-

inclusive. For single-core simulations, Hawkeye’s speedup is 8.4% over LRU, whereas

SHiP and SDBP performance is 5.6% and 6.2% respectively. That translates to an

average miss reduction of 17% on 20 memory intensive benchmarks, while SDBP,

SHiP performs 11.4% and 11.7% respectively. In multi-core simulations with two

cores and a shared LLC, Hawkeye achieves a 13.5% speedup while SHiP and SDBP

only achieve 10.7% and 11.3% speedup. In multi-core simulations with four cores

the advantage of Hawkeye is higer: 15% speedup compared to 11.4% and 12.1% for

SHiP and SDBP respectively.

3.8 Bypass and Insertion

LRU and other replacement policies implement usage recency and usage frequency

to determine the most likely dead blocks. To order the blocks by its recency, every-

time there is a hit in the cache we update the state of the blocks to reflect their

recency. In an exclusive last-level cache it is not possible to keep track of those prop-

erties because a hit in the last level cache causes an eviction in that level instead of

promoting it. The only order we can rank the blocks of an exclusive cache would be

the fill order, but that has little correlation with the recency. They assume a 3-level

cache, where the L3 is exclusive from L2.

42

Gaur et al. propose to use an estimation of the average recall distance of L3

blocks (being the L3 the last-level cache) and their use count in the L2 cache [54].

They define the average recall distance as the mean number of L3 allocations between

the allocation of a block B in the LLC and the recall of B from the L2 cache. That

means, if we have a block B that is evicted from the L2, it will be filled in the LLC.

All the allocations between that fill of B in the LLC and a hit of B in the LLC are

going to be counted towards that average. The use count is the number of times

there is a hit in a block since its fill in that cache level. They define the trip count

as the number of trips the block goes from the L2 to the L3 (L3 hit) since the first

hit in L3.

They found that the best way of identifying dead/live blocks was by using the

information from the trip count together with the L2 use count. They decide based

on a few sampler sets. They use the liveness of the block to decide whether to bypass

and with what age to insert the block. They combine this technique with set dueling

that always uses the bypassing.

They proposed 3 insertion techniques using the trip count (L3 hit) and use count

(L2 hit). They used an aggresive multi-stream prefetcher. Their best technique

improves the IPC of single-threaded applications by 3.4% compared to a baseline

"not-recently-filled" replacement policy. The multiprogrammed mixes improved by

2.5%.

3.9 Hierarchy-Awareness and Bypass

Most replacement policies for LLCs are designed to use the information from

that same level of cache without any knowledge of the inner levels statistics. A

replacement of an LLC cache block in an inclusive cache can replace and invalidate

a block that is continuosly hitting in the L1 but never in the LLC. This is not a

43

desirable behavior.

Chaudhuri et al. proposed a cache hierarchy-aware replacement policy (CHAR)

for inclusive LLCs and bypass for exclusive LLCs [55]. They dynamically estimate

the reuse probability of a block based on the L2 reuse pattern to hint the LLC

replacement policy. In an inclusive cache, it will hint the LLC to mark the block as

the next victim if the pattern indicates that the next reuse is beyond the LLC reach.

In an exclusive cache, it will help decide whether to bypass the cache block from the

LLC.

The authors implement the CHAR replacement policy in the LLC. They use a

subset of L2 evictions that correspond to 16 LLC sample sets to inform the dead hint

detector of CHAR. The LLC sample sets use a 2-bit SRRIP-HP replacement policy:

the placement of a block sets the RRPV value to two, and the promotion on a hit to

zero. To learn from the reuse behavior, the authors proposed four attributes, listed

below, to classify the L2 cache blocks in five classes (described in Table 3.2). All L2

blocks contain two extra bits representing the 5 classes.

• A0: prefetch or demand

• A1: hit or miss

• A2: number of demand uses in L2

• A3: L2 coherence state (in a MESI protocol)

They included two saturating counters per class: "E" that contains the total

number of evictions of that class and "L" that contains the total number of hits

per class. Additionally, they have a saturating counter "N" with the total number of

evictions. Every time there is an eviction from L2 of one of the blocks that map to the

sample sets in the LLC, the counter "E" of the block class and "N" are incremented.

44

Evictions of blocks of class 0 to 3 that do not map to sample sets in the LLC, invoke

the dead block detection algorithm. On an L2 fill of a block mapping to a sample

set, the LLC sends which class the block belongs to and increments the hit counter

of that class when it hits in the LLC. If it is a miss or the block is not in a sample

set, the L2 sets the class of the block depending on whether it is a prefetch or not

and if it is a hit or miss in the LLC.

Their dead block detection algorithm uses the saturating counters to dinamically

choose a threshold that has to be smaller than dividing the total number of hits by

the total number of evictions of each class. For example, one threshold could be the

hit rate of the LLC. In other words, the block belonging to a class are considered

dead when the L2 evictions exceed the number of hits in LLC for blocks of that class

by a certain ratio.

An exclusive LLC design needs more interconnect bandwidth than an inclusive

design due to copying all L2 evictions -clean or dirty. The authors claim that their

CHAR algorithm can be used for selective bypassing blocks from the LLC that are

likely to be dead. CHAR, in an exclusive LLC, every L2 eviction address is first sent

to the coherence directory together with the dead hint. If the block is marked as

alive, the block is then filled to the LLC. If the block is marked as dead, it will only

be filled to the LLC if there is an invalid way, and it will be filled with age three (in

immediate danger of eviction). Additionally, to avoid the ping-pong effect, a block

that is marked as alive will be stored in the LLC in non-inclusive mode -it will not

cause an eviction on LLC hit.

To evaluate the results, they used SRRIP as a baseline with a multi-stream

prefetcher. They evaluated single-threaded, multiprogrammed and shared memory

workloads. In an inclusive cache design, CHAR improves by 5.3% on average for

100 4-way multiprogrammed mixes over the baseline. In an exclusive design, it im-

45

Class A0 A1 A2 A3

C0 Prefetch Miss 0 E/S

C1 X Miss 1 E/S

C2 X Miss 1 M

C3 X Miss � 2 X

C4 X Hit X X

Table 3.2: L2 cache block classification in the CHAR algorithm.

proves 8.2% on average compared to an identical inclusive design (with about 66%

bypasses).

46

4. METHODOLOGY

In this chapter, we explain the methodology used to evaluate our work. First, we

explain what we used to perform our tests and, second, how we evaluated them.

In this thesis, we focus on single-threaded applications. How to extend the

methodology to multiple threads remains as future work.

4.1 Experimental Setup

This section describes the experimental setup used in this thesis.

4.1.1 Host Machine

We ran most of our experiments in the Terra supercomputer, part of the Texas

A&M University supercomputing facilities. This supercomputer uses Slurm as work-

load manager [56].

Part of this research was also done on the private cluster of the Texas Architecture

and Compiler Optimization (TACO) research group. This is a group of heterogeneous

machines with no workload manager. The cluster includes different models of Intel

and AMD machines.

4.1.2 Benchmarks

We used 18 memory intensive traces from the SPEC CPU2006 benchmark suite [6]

(listed in Table 4.1), three single threaded server workload traces from CloudSuite [7]

(listed in Table 4.2), and a trace from a machine learning workload "mlpack_cf" [8].

In total, 22 benchmarks.

All the SPEC CPU2006 traces were collected with SimPoint [57]. The CloudSuite

and ml_pack traces were collected after fast-forwarding at least 30 billion instruc-

tions.

47

The execution of the traces is divided in two stages: warm-up and timing model-

ing. The warm-up phase serves to update the machine state before starting timing

simulation so that the state is similar as what it would be if we had simulated all the

instructions until the point timing simulation starts. For example, in the warm-up

phase, the caches and branch predictors are updated. In this thesis, the warm-up

phase consists of 200 million instructions. The timing modeling phase is the detailed

simulation that counts towards statistics, such as IPC. In this thesis, the simulation

phase consists of one billion instructions. There are traces that are shorter than one

billion instructions, for those, the trace re-starts from the beginning until completing

that fixed amount of instructions.

Single-core configurations are run with a fixed instruction count of 200 million of

warm-up plus one billion of timing simulation.

Multi-core simulations execute a single benchmark per core. In this case, all

traces warm-up until all finish 200 million instructions. For the timing modeling

phase, all cores run until all have run at least one billion instructions, also known as

last [58]. So, some cores will run more than one billion instructions but only the first

billion will count towards the statistics. This methodology is used so that all cores

are running at the same time during all the execution. This is important to model

the effects of a shared LLC in a more realistic environment.

For the single core simulations, we ran all cache configurations with the 22 bench-

marks. For the multi-core simulations, we used multiprogrammed workloads on four

cores. We used nine mixes with four traces each. The mixes were generated ran-

domly. Table 4.3 lists all mixes.

48

astar libquantum

bwaves mcf

bzip2 milc

cactusADM omnetpp

gcc soplex

GemsFDTD sphinx3

gromacs wrf

lbm xalancbmk

leslie3d zeusmp

Table 4.1: SPEC CPU2006 memory intensive benchmarks.

data_caching

graph_analytics

sat_solver

Table 4.2: CloudSuite benchmarks.

Mix 1 astar leslie3d soplex zeusmp

Mix 2 mcf milc omnetpp sat_solver

Mix 3 astar cactusADM leslie3d zeusmp

Mix 4 cactusADM gromacs sphinx3 sat_solver

Mix 5 cactusADM gromacs lbm milc

Mix 6 cactusADM GemsFDTD lbm leslie3d

Mix 7 astar bzip2 sphinx3 data_caching

Mix 8 bwaves milc data_caching sat_solver

Mix 9 bzip2 omnetpp data_caching graph_analytics

Table 4.3: Multiprogrammed workloads mixes for simulating 4 cores.

49

4.1.3 Simulator

We used the ChampSim simulator, which is an extended version of the simulator

used in the 2

nd
Data Prefetching Championship [59] and recently used in the 2nd

Cache Replacement Championship [5]. This simulator models a simple multi-core

out-of-order.

The configuration to model the multi-core we used is described in Table 4.4. The

baseline consists of a 3-level cache hierarchy with all levels following a non-inclusive

policy. All caches use copy back with write allocate write policies.

Parameter Configuration

L1 I-cache 32KB, 64B blocks, 8-way,

(private) 8 MSHRs, 1 cycle latency,

64 read/write/prefetch queue size

L1 D-cache 32KB, 64B blocks, 8-way,

(private) 8 MSHRs, 4 cycles latency,

64 read/write/prefetch queue size

L2 unified cache 256KB, 64B blocks, 8-way

(private) 16 MSHRs, 8 cycles latency,

32 read/write/prefetch queue size

Table 4.4: Simulator configuration.

50

Parameter Configuration

non-inclusive

L3 unified cache 1MB per core, 64B blocks, 16-way

(shared) 32 MSHRs, 20 cycles latency,

16 per core read/write/prefetch queue size

non-inclusive

Frequency 4GHz

Page size 4KB

Fetch, decode and retire 4 wide

Execution 6 wide

Load Queue 2 wide

Store Queue 1 wide

DRAM row precharge latency 11 cycles

DRAM row address to column

address latency 11 cycles

DRAM column address

strobe latency 11 cycles

Table 4.4: Continued

51

Parameter Configuration

DRAM 2 channels (1 DIMM per channel),

8 banks (64MB per bank),

8 ranks (512MB per rank),

4GB per DIMM

DRAM channel width 8

DRAM I/O frequency 800MHz

Branch Predictor Perceptron

Reorder Buffer size 256

Pipeline depth 5

4.2 Evaluation

This section describes which cache configurations we simulated. The parameters

we changed are: prefetcher, replacement policy, inclusion policy and number of cores.

4.2.1 Configurations

We evaluated several combinations of prefetchers, replacement policies and inclu-

sion policies for both single-threaded and multiprogrammed workloads.

The evaluated L2 prefetchers are six: no prefetcher, ip_stride, next_line (in

section 2.4.1), bop (in section 2.4.3), daampm (in section 2.4.4) and kpcp (in sec-

52

Table 4.4: Continued

tion 2.4.5). The evaluated L1 prefetchers are two: no prefetcher and next_line.

The evaluated replacement policies are six: LRU (in section 2.3.1), EAF (in

section 3.5), KPC-R (in section 2.4.5), SHiP (in section 3.3), SRRIP and DRRIP (in

section 3.1).

The total number of simulations (nsims) are the product of all the prefetchers

and replacement policies. Equation 4.1 shows the calculation of the total number of

simulations for single-threaded simulations, which is 4752.

nsims = nincs ⇥ L1p⇥ L2p⇥RP ⇥ b

= 3⇥ 2⇥ 6⇥ 6⇥ 22

= 4752

(4.1)

nsims = nincs ⇥ L1p⇥ L2p⇥RP ⇥m

= 3⇥ 2⇥ 6⇥ 6⇥ 9

= 1944

(4.2)

4.2.2 Performance Measurement

The baseline configuration used as reference in our evaluation has the following

features: non-inclusive cache inclusion policy, no prefetcher in neither the L1 nor L2,

and the LRU replacement policy.

For the single-core, single-thread simulations, we compute the speedup of a con-

figuration i over the baseline running a particular benchmark by extracting the in-

structions per cycle (IPC) of configuration i (see section 4.2.1) and dividing it by the

IPC of the baseline [60]. Equation 4.3 shows the speedup calculation used.

53

Speedupi =
IPCi

IPCbaseline
(4.3)

For the multi-core simulations, we compute the speedup of a configuration i over

the baseline running a particular mix by computing the average IPC across all threads

and dividing it by the average IPC across all thread in the baseline. Equation 4.4

shows the speedup calculation used.

Speedupi =
AverageIPCi

AverageIPCbaseline
(4.4)

54

5. IMPLEMENTATION

In this chapter, we first explain the organization of the ChampSim simulator’s

code.

5.1 ChampSim Code

We simulate a cache hierarchy with 3 levels of cache. The cache is write back and

write allocate. The traces are all single-threaded. To simulate more than one core

we use workloads of several single-threaded benchmarks (multiprogrammed).

In this thesis, we only modified the cache component in ChampSim. Figure 5.1

shows the three main functions responsible to operate the cache.

1 cache_operate () {
handle_fill ();

3 handle_writeback ();
handle_read ();

5 }

Figure 5.1: Main functions on ChampSim to operate the cache.

5.1.1 Cache Operation

The main operations that a cache level has to handle are: fills, reads and writes.

When the cache has to handle a fill, it is a cache block that is pending to be added

to that cache level from either a read that came back from the higher level cache or

a write back from the lower level.

The handle_fill() function is the responsible of:

55

• Finding a victim block before allocating the new one

• Deciding whether to bypass the cache, if bypass is enabled

• Writing back the victim block, if it was dirty

• Allocating the block and freeing MSHR entry

The handle_writeback() is the responsible of:

• If it is a hit, writing the new data and mark the block as dirty

• If it is a miss:

– Finding a victim block before allocating the new one

– Writing back the block, if the victim was dirty

– Allocating the block as dirty

The handle_read() function is the responsible of:

• If it is a hit, it returns the value

• If it is a miss, it adds the request to the next cache level MSHR

5.1.2 Non-Inclusive Implementation

The default implementation on this simulator is the "non-inclusive". Whenever

there is a miss in a cache level, that cache level and all the higher levels are filled

with the block. For example, an LLC miss will fill the block in all cache levels. When

evicting a block at any cache level, there is no other effect than evicting the block

from that cache level.

56

L1 L2

Hit - Return block to CPU - Return block to L1

- Update replacement - Update replacement

and prefetcher and prefetcher

Miss - Request block to L2 - Request block to memory

- Evict previous block? - Evict previous block?

- Allocate block - Allocate block

- Return block to CPU - Return block to L1

- Update replacement - Update replacement

and prefetcher and prefetcher

Evict Clean: - Invalidate block Clean: - Invalidate block

Dirty: - Write back to L2 Dirty: - Write back to memory

Invalid: – Invalid: –

Always: –

Write back – Hit: - Write block

Miss: - Evict block?

- Write block

Table 5.1: Model of an non-inclusive two-level cache.

57

5.1.3 Statistics

The statistics used to compare our cache models are the following.

Eviction stats:

• The number of all evictions in every cache level.

• The number of evictions due to inclusion policies: for inclusive, all back in-

validations; for exclusive, the invalidations on hit; for non-inclusive there are

none.

• The number of dirty evictions in every cache level.

General cache stats, one per cache level:

• The number of accesses, and how many are reads and writes.

• The number of hits and misses, and how many are reads and writes.

• The misses per kiloinstruction (MPKI).

5.2 Modifying ChampSim

We modified the Champsim simulator (see section 4.1.3), which implemented

a non-inclusive cache, to model inclusive and exclusive caches. This section de-

scribes all the modifications made to the code assuming an already implemented

non-inclusive cache.

5.2.1 Inclusive Implementation

In this implementation, we model both the L2 and the L3 to be inclusive. The

implementation was done on top of a non-inclusive default configuration. Table 5.2

shows a more detailed description with the main changes with respect to the non-

inclusive model in bold.

58

L1 L2

Hit - Return block to CPU - Return block to L1

- Update replacement - Update replacement

and prefetcher and prefetcher

Miss - Request block to L2 - Request block to memory

- Evict previous block? - Evict previous block?

- Allocate block - Allocate block

- Update replacement - Return block to L1

and prefetcher - Update replacement

and prefetcher

Evict Clean: - Invalidate block Clean: - Invalidate block

Dirty: - Write back to L2 Dirty: - Write back to memory

Invalid: – Invalid: –

Always: - Invalidate request

to L1

Write back – Hit: write block

Miss: (should not happen)

Table 5.2: Model of an inclusive two-level cache.

59

In an inclusive cache, the difference with the default non-inclusive implementation

is that whenever there is an eviction in a cache level, all the lower levels need to be

evicted as well. For example, an eviction in the L3 of a block that is present in both

L1 and L2 will invalidate the block in all three levels. This back invalidation needs

to be done before evicting that block.

We implemented inclusivity right after finding a victim block to be replaced. This

happens when handling a fill and when handling a write back miss. However, in an

inclusive cache, there should not be any write back misses because all blocks in a

lower level must also be present in the higher levels. We added an assert on a write

back miss to make sure this does not happen. Therefore, to implement inclusivity

we only focus on the fill.

If the block was dirty in any of the levels, we also have to ensure that the block

that is written to memory is the one in the lower level. If a block is dirty in L1 and

L2, we need to write the block present in L1 because it is the most updated block.

We disabled the possibility of bypassing the cache. In the non-inclusive cache,

bypassing was enabled in the LLC. In an inclusive cache all blocks in the lower levels

must be always in the LLC to keep inclusivity so bypassing is not an option. In our

simulations, bypassing was enabled only in non-inclusive and exclusive.

In a multi-core processor, a block might be in any of the core-private caches.

In this case, on an LLC eviction, we need to back invalidate all lower level caches

private to all cores.

Figure 5.2 shows a high-level code of this implementation.

Figure 5.3 shows what happens when for all cases on an LLC miss. This figure

was created to make sure that our implementation does not leave any case out. The

cases with a red cross are the ones that trigger an assert due to not complying with

inclusivity. For example, a block that is valid (either clean or dirty) in the LLC and

60

1 back_invalidate(cache_level , addr) {
if (victim.isValid ()) {

3 if (cache_level == L3) {
for (i=0; i<NCORES; i++) {

5 if (L2.present(core[i], addr)) {
if (L1.present(core[i], addr)) {

7 L1.invalidate(core[i], addr);
}

9 L2.invalidate(core[i], addr);
} else {

11 assert(not L1.present(core[i], addr));
}

13 }
L3.invalidate(addr);

15 } else if (cache_level == L2) {
if (L1.present(addr)) {

17 L1.invalidate(addr);
}

19 L2.invalidate(addr);
}

21 }
}

23
handle_fill () {

25 ...
victim = find_victim ();

27 back_invalidate(cache_level , victim.getAddress ());
...

29 }

Figure 5.2: Inclusive cache high-level code on top of the non-inclusive implementa-

tion.

61

in L1 must also be valid in L2. The green-numbered cases are the valid ones where

the inclusion policy has to perform an action.

5.2.2 Exclusive Implementation

In this implementation, we model the L2 to be non-inclusive of L1, and the L3 to

be exclusive of L2. The implementation was done on top of a non-inclusive default

configuration. Table 5.3 shows a more detailed description, with the main changes

with respect to the non-inclusive model in bold.

In an exclusive cache, the main differences are that a miss to the L1 or L2 does

not generate a fill in the LLC and on an LLC hit, the block is invalidated. Also, on

an L2 eviction the block is written back to the LLC whether the block was dirty or

clean (also known as copy back). The high level implementation of this model is as

follows:

• Allocate

– in L3 on an L2 eviction

– in L2 on a fill or prefetch (bypass L3)

• Evict

– from L3 on an L3 hit

– from L2 on a replacement

Our modifications to implement the exclusive cache were on the fill, read and

write back functions.

On an LLC fill, we always bypass the block. On an L2 fill, instead of just

invalidating the block if it was clean, we always send it to the LLC. In the default

non-inclusive cache, L2 fills write to the LLC only the victim blocks that are dirty .

62

Figure 5.3: Diagram with all the possible cases on an LLC miss in an inclusive cache

on a single core simulation.

63

L1 L2

Hit - Return block to CPU - Return block to L1

- Update replacement - Invalidate

and prefetcher

Miss - Request block to L2 - Request block to memory

- Evict previous block? - Return block to L1

- Allocate block

- Update replacement

and prefetcher

Evict Clean: - Write back to L2 Clean: - Invalidate block

Dirty: - Write back to L2 Dirty: - Write back to memory

Invalid: – Invalid: –

Always: –

Write back – Hit: –

Miss: -Evict block?

-Write new block

Table 5.3: Model of an exclusive two-level cache.

On an LLC read, we send the block to the L2 and invalidate the copy in that

LLC.

64

On a write back, we modified the packet that is sent to the LLC to contain the

information of whether the block was dirty or clean. In the default non-inclusive

implementation, it assumes that, on a write back, the block was dirty in the cache

were it was evicted. Then, for clean write backs (or copy backs) in the exclusive case,

we implemented that on an L2 write back, the block is written back together with

the corresponding dirty bit, so the exclusive cache can allocate it with the correct

state: whether it is dirty or clean.

Figure 5.4 shows a high level implementation of the code, with only the modifi-

cations over the non-inclusive.

5.3 Scripts

For the work of this thesis, we prepared and used several scripts. As explained

in Section 4.2.1, the numbers of simulations that we ran for one and four cores were

high. On top of that, as mentioned in Section 4.1.1, we ran part of those simulations

in two different clusters. One has a workload manager and the other does not.

It was necessary to have a framework of scripts to automatize all the process

in all stages. All the main stages of this process are: compile the code for each

configuration, run the simulations, gather all results in a parseable file, compute

intermediate results (e.g. speedup, geometric mean) and plot the results.

Most of the scripts were done in bash and iterate over all possible cache configura-

tions. We explain below the most interesting ones that are to execute the simulation

in different clusters and the one that generates the plots.

5.3.1 Execute

To run the simulations we prepared two different scripts. One to run the simula-

tions in the Terra supercomputer and another to run them in our cluster.

65

1 handle_fill () {
...

3 if (L3) {
// bypass

5 }

7 if (L2) {
// copy back victim to L3

9 }
...

11 }

13 handle_read () {
...

15 if (hit and L3) {
// send block to lower level

17 L3.invalidate(block);
}

19 ...
}

21
handle_writeback () {

23 ...
if (L2) {

25 // copy back victim to L3
}

27 ...
}

Figure 5.4: Exclusive cache high-level code on top of the non-inclusive implementa-

tion.

66

The Terra supercomputer uses Slurm as a workload manager. To run jobs in this

machine, it is necessary to create a job script with several parameters. For example,

some of these parameters are: number of cores required, time limit (after this time

passes, the job will be killed), amount of memory per node required and output file

name. After those parameters, we add the commands to run a simulation for a single

configuration and workload. Our script iterates over all configurations and traces,

generates a job script with the appropriate parameters for each configuration and

submits it for execution.

The cluster of our lab does not have a workload manager, so we need to do an

equivalent work in our script. We used screen to run this script so it keeps running

after we close our connection to the cluster. We chose to use 22 machines from the

cluster. The script contains the names of all those machines. As before, the script

iterates over all configurations and traces, but checks the machine before executing

the simulation. First, we check that the connectivity through secure shell (SSH) is

good. Then, we check that the CPU load of the machine is under a certain threshold.

This is to limit the number of simulations per machine and not to overuse a machine

if other researcher in our group is using the same machine at the moment. If there

is no connectivity or the CPU load is high, we try a different machine. If there was

no available machine after a few tries, the script sleeps for a while, and then it tries

again. Whenever the scrip finds an available machine, it runs the simulation via an

SSH tunnel.

5.3.2 Plots

We used bash and python scripting languages to parse the result files and create

the plots. The output of ChampSim includes the number of instructions and cycles

executed, cache-related statistics among other information about the configuration,

67

progress and finalization of the simulated run. The bash script generates, for single-

threaded simulations, a comma separated value (CSV) file including the number

of cycles, the IPC among other statistics for each combination of benchmark, L1

prefetcher, L2 prefetcher, LLC replacement policy and inclusion policy. For multi-

core simulations, the output file includes the average IPC of the mix instead of the

IPC of each individual thread.

The python script reads, for single-threaded simulations, the CSV file and stores

its contents in a pandas DataFrame for each benchmark. The IPC of each hardware

configuration is divided by that of the baseline for each benchmark, resulting in a

normalized set of data. The metric of interest is normalized execution time, also

known as speedup. The script then computes the geometric mean across all bench-

marks’ speedup and plots it. For multi-core workloads, the same procedure computes

the geometric mean across all mixes using the average IPC across threads instead of

the IPC of a single thread as in the single-threaded runs.

68

6. RESULTS

In this chapter we present the results obtained during this thesis. First, we

analyze single- and multi-core results of all cache configurations previously described

in Section 4.2.1. Then, we analyze the same for single-core but with a larger cache

capacity in all levels to compare sensitivity. Last, we compare all those results and

discuss them.

6.1 Single-Core Results

This section presents the results of the single-core simulations. Appendix A

contains all results per benchmark.

Figure 6.1 shows the geometric mean speedup of multiple cache configurations

across all benchmarks. The baseline in this figure is: no L1 or L2 prefetcher, LRU

replacement policy and non-inclusive policy.

The following subsections analyze the results from Figure 6.1 in terms of inclusion

policies, prefetchers and replacement policies.

69

F
i
g
u
r
e

6
.
1
:

G
e
o
m

e
a
n

s
p
e
e
d
u
p
s

t
o

c
o
m

p
a
r
e

d
i
ff
e
r
e
n
t

c
o
n
fi
g
u
r
a
t
i
o
n
s

o
f

L
1

a
n
d

L
2

p
r
e
f
e
t
c
h
e
r
s
,

r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
i
e
s

a
n
d

c
a
c
h
e

i
n
c
l
u
s
i
o
n
s
.

T
h
e

c
o
n
fi
g
u
r
a
t
i
o
n
s

c
o
m

p
a
r
e
d

a
r
e
:

L
1

p
r
e
f
e
t
c
h
e
r
,
L
2

p
r
e
f
e
t
c
h
e
r
,
r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
y

a
n
d

c
a
c
h
e

i
n
c
l
u
s
i
o
n
.

T
h
e

Y
-
a
x
i
s

s
h
o
w

s
t
h
e

s
p
e
e
d
u
p

o
v
e
r

t
h
e

b
a
s
e
l
i
n
e

c
o
n
fi
g
u
r
a
t
i
o
n
:

n
o

p
r
e
f
e
t
c
h
e
r
s
,

L
R

U
r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
y

a
n
d

a
n
o
n
-

i
n
c
l
u
s
i
v
e

c
a
c
h
e
.

T
h
e

X
-
a
x
i
s

s
h
o
w

s
t
h
e

d
i
ff
e
r
e
n
t

c
a
c
h
e

c
o
n
fi
g
u
r
a
t
i
o
n
s
,
i
n

o
r
d
e
r

o
f
:

L
1

p
r
e
f
e
t
c
h
e
r

(
l
1
p
)
,
L
2

p
r
e
f
e
t
c
h
e
r

(
l
2
p
)

a
n
d

r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
y

(
r
e
p
l
)
.

70

6.1.1 Inclusion Results

The best configurations for non-inclusive and inclusive caches, and overall, are

those without L1 prefetcher and with the KPC-P prefetcher in the L2. The six best

configurations are all with that prefetcher combination. The best two configurations

for both inclusive and non inclusive are using DRRIP (non-inclusive gets 34.2%

speedup and inclusive an 33.6%) and EAF (both inclusive and non-inclusive get

34.1% speedup).

However, an exclusive LLC shows a different behavior. The best six configurations

for an exclusive cache are those without an L1 prefetcher and with the DAAMPM

prefetcher in the L2. The best one uses the LRU replacement policy, which gets a

28% speedup over the baseline. The next best configurations is with DRRIP, and

the other four are about the same (KPC-R, SHiP, SRRIP and EAF). The exclusive

policy, in general, performs worse than inclusive and non-inclusive policies.

6.1.2 Prefetcher Impact

Prefetching clearly has an impact on performance. The worst configurations are

the ones without prefetching in any of the cache levels. The exclusive cache is the

one that suffers the most of not having any prefetchers by getting a slowdown in all

replacement policies except for LRU and DRRIP.

Generally, not using a prefetcher in L1 seems to get better results than using the

next-line prefetcher. This might be due to interference between prefetchers. The best

performing configurations for all inclusion types are all without an L1 prefetcher.

As mentioned in the previous section, the best configurations for each inclusion

type are given from the prefetcher combination. This shows that many benefits of

using different replacement policies are shadowed by the prefetcher.

71

6.1.3 Replacement Policy Impact

There is no clear winner among replacement policies, but there are a few patterns

that indicate that the LRU replacement policy is among the best options to use in

general for an exclusive cache independently of the prefetchers.

All inclusion policies have similar performance using the LRU replacement policy

except when using the KPC-P prefetcher. This mostly comes from benchmarks such

as bzip2, omnetpp, sphinx3 and xalancbmk (see A).

The KPC-R replacement policy makes the inclusive cache perform worse than

the non-inclusive and, in most of cases, worse than exclusive. In other replacement

policies, the inclusive and non-inclusive have more similar behavior.

The LRU replacement policy gets typically similar or worse performance for many

inclusive and non-inclusive cache configurations among a combination of prefetchers.

However, for exclusive caches, LRU gets generally the best performance among a

prefetcher combination.

Furthermore, exclusive caches do not show much sensitivity to the replacement

policy for a prefetcher combination. In contrast, inclusive and non-inclusive are more

variable.

6.2 Multi-Core Results

This section presents the results of the multi-core simulations. Appendix B con-

tains all results per benchmark.

Figure 6.2 shows the geometric mean speedup of all cache configurations in multi-

core. The baseline in the figure is: no L1 and L2 prefetchers, LRU replacement policy

and all non-inclusive caches.

72

F
i
g
u
r
e

6
.
2
:

G
e
o
m

e
a
n

s
p
e
e
d
u
p
s

t
o

c
o
m

p
a
r
e

d
i
ff
e
r
e
n
t

c
o
n
fi
g
u
r
a
t
i
o
n
s

o
f

L
1

a
n
d

L
2

p
r
e
f
e
t
c
h
e
r
s
,

r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
i
e
s

a
n
d

c
a
c
h
e

i
n
c
l
u
s
i
o
n
s
.

T
h
e

c
o
n
fi
g
u
r
a
t
i
o
n
s

c
o
m

p
a
r
e
d

a
r
e
:

L
1

p
r
e
f
e
t
c
h
e
r
,
L
2

p
r
e
f
e
t
c
h
e
r
,
r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
y

a
n
d

c
a
c
h
e

i
n
c
l
u
s
i
o
n
.

T
h
e

Y
-
a
x
i
s

s
h
o
w

s
t
h
e

s
p
e
e
d
u
p

o
v
e
r

t
h
e

b
a
s
e
l
i
n
e

c
o
n
fi
g
u
r
a
t
i
o
n
:

n
o

p
r
e
f
e
t
c
h
e
r
s
,

L
R

U
r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
y

a
n
d

a
n
o
n
-

i
n
c
l
u
s
i
v
e

c
a
c
h
e
.

T
h
e

X
-
a
x
i
s

s
h
o
w

s
t
h
e

d
i
ff
e
r
e
n
t

c
a
c
h
e

c
o
n
fi
g
u
r
a
t
i
o
n
s
,
i
n

o
r
d
e
r

o
f
:

L
1

p
r
e
f
e
t
c
h
e
r

(
l
1
p
)
,
L
2

p
r
e
f
e
t
c
h
e
r

(
l
2
p
)

a
n
d

r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
y

(
r
e
p
l
)
.

73

6.2.1 Inclusion Results

The best configuration for non-inclusive is: no L1 prefetcher, KPC-P L2 prefetcher

and DRRIP, with a 46.9% speedup over the baseline. Most of the next best configu-

rations are with next-line L1 prefetcher, KPC-P L2 prefetcher with different replace-

ment policies. The second best configuration is using that prefetcher configuration

with KPC-R, but among the rest DRRIP stands out.

The best configuration for an inclusive cache, however, is different to the non-

inclusive in contrast with single-core. The best configuration for inclusive and overall

is: no L1 prefetcher, KPC-P L2 prefetcher and SHiP replacement policy, with a 48.8%

speedup over the baseline. The second best is the same as the best configuration for

the non-inclusive but without L1 prefetcher, achieving a 46.3% speedup. The third

best is finally the same configuration as the best one for non-inclusive, achieving a

43.3% speedup.

The best configuration for an exclusive cache is, like for single-core, different from

the other inclusion policies. The best configuration is exactly the same as for single-

core: no L1 prefetcher, DAAMPM L2 prefetcher and LRU replacement policy, with

a 38.9% speedup over the baseline. The second best configuration is the same but

changing the L2 prefetcher by KPC-P, with a 37.8% speedup. The next four best

configurations are all the remaining replacement policies with no L1 prefetcher and

DAAMPM L2 prefetcher, in order: KPC-R, SHiP, EAF and SRRIP.

To summarize, for inclusive and non-inclusive the L2 prefetcher that works best

is KPC-P. The three similar and best replacement policies are DRRIP, KPC-R and

SHiP. The main difference is that for non-inclusive, using a next-line L1 prefetcher

is generally better than none, and for inclusive, the opposite. For exclusive, the

replacement policy that works best is, again, LRU, and generally DAAMPM L2

74

prefetcher and no L1 prefetcher. Again, as for single-core configurations, both the

prefetcher and the replacement policies that work best for an exclusive cache are

different than from the ones in non-inclusive and inclusive caches.

6.2.2 Prefetcher Impact

As shown in the previous section, all the best cache configurations generally

came from specific combinations of prefetchers. The exclusive and inclusive caches

do better without L1 prefetcher while the non-inclusive does better with the next-line

prefetcher. This is different than from single-core, where not using an L1 prefetcher

was best for any configuration.

Regarding the L2 prefetcher, the KPC-P works better for inclusive and non-

inclusive while the exclusive benefits more from the DAAMPM. However, the KPC-P

is the second best option as an L2 prefetcher on an exclusive cache.

All the worst configurations are definitely the ones without no prefetcher at all,

like for single-core. However, the exclusive policy gets more performance than the

other inclusion policies in three replacement policies (EAF, LRU and SRRIP), in

contrast to single-core where the exclusive was always the worst with a slowdown.

6.2.3 Replacement Policy Impact

The DRRIP replacement policy makes the non-inclusive policy perform better in

most cases compared to any other replacement policy. SRRIP, when combined with

next-line L1 prefetcher and DAAMPM, makes the non-inclusive perform better and

even close to DRRIP performance.

LRU makes the non-inclusive policy to consistently perform the worst among

all configurations except with the next-line L1 prefetcher and KPC-P L2 prefetcher.

That configuration even outperforms the other inclusion policies. On the other hand,

LRU is always the best among different prefetcher combinations on an exclusive

75

cache. On single-core, LRU makes all inclusion policies behave similarly. On multi-

core, it makes the exclusive become the best, inclusive significantly worse and non-

inclusive the worst, in general.

SHiP stands out in inclusive caches. In many prefetcher configurations in an

inclusive cache, SHiP is the best compared to other replacement policies. It is also

typically the best, for a design with SHiP, among other inclusion policies.

On exclusive caches, the replacement policy does not seem to make much impact

on any combination of prefetchers similarly to single-core simulations. Inclusive and

non-inclusive caches vary more when using different replacement policies.

6.3 Size Sensitivity

This section presents the results of the single-core simulations with a larger cache

as explained below. Appendix C contains all results per benchmark.

Figure 6.3 shows the geometric mean speedup of multiple cache configurations

across all benchmarks. The baseline in this figure is: no L1 or L2 prefetcher, LRU

replacement policy and non-inclusive policy. In these simulations we modeled a

larger cache hierarchy: 64KB L1, 512KB L2 and 2MB LLC, in comparison to the

configuration used in the previous analyses: 32KB L1, 512KB L2 and 2MB LLC.

Appendix C contains all results per benchmark.

We discuss these larger cache size results to the baseline cache size used in the

single-core results (Section 6.1) in the following sections.

76

F
i
g
u
r
e

6
.
3
:

G
e
o
m

e
a
n

s
p
e
e
d
u
p
s

t
o

c
o
m

p
a
r
e

s
i
z
e

s
e
n
s
i
t
i
v
i
t
y

w
i
t
h

d
i
ff
e
r
e
n
t

c
o
n
fi
g
u
r
a
t
i
o
n
s

o
f
L
1

a
n
d

L
2

p
r
e
f
e
t
c
h
e
r
s
,
r
e
p
l
a
c
e
-

m
e
n
t

p
o
l
i
c
i
e
s

a
n
d

c
a
c
h
e

i
n
c
l
u
s
i
o
n
s

o
n

a
l
a
r
g
e

c
a
c
h
e

c
o
n
fi
g
u
r
a
t
i
o
n
.

T
h
e

s
i
z
e

o
f
e
a
c
h

c
a
c
h
e

l
e
v
e
l
i
s
:

6
4
K

B
L
1
,
5
1
2
K

B
L
2

a
n
d

2
M

B
L
L
C

.
T

h
e

c
o
n
fi
g
u
r
a
t
i
o
n
s

c
o
m

p
a
r
e
d

a
r
e
:

L
1

p
r
e
f
e
t
c
h
e
r
,
L
2

p
r
e
f
e
t
c
h
e
r
,
r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
y

a
n
d

c
a
c
h
e

i
n
c
l
u
s
i
o
n
.

T
h
e

Y
-
a
x
i
s

s
h
o
w

s
s
p
e
e
d
u
p

o
v
e
r

t
h
e

b
a
s
e
l
i
n
e

c
o
n
fi
g
u
r
a
t
i
o
n
:

n
o

p
r
e
f
e
t
c
h
e
r
s
,
L
R

U
r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
y

a
n
d

a
n
o
n
-
i
n
c
l
u
s
i
v
e

c
a
c
h
e
.

T
h
e

X
-
a
x
i
s

s
h
o
w

s
t
h
e

d
i
ff
e
r
e
n
t

c
a
c
h
e

c
o
n
fi
g
u
r
a
t
i
o
n
s
,

i
n

o
r
d
e
r

o
f
:

L
1

p
r
e
f
e
t
c
h
e
r

(
l
1
p
)
,

L
2

p
r
e
f
e
t
c
h
e
r

(
l
2
p
)

a
n
d

r
e
p
l
a
c
e
m

e
n
t

p
o
l
i
c
y

(
r
e
p
l
)
.

77

6.3.1 Inclusion Results

One of the differences compared to the baseline cache size is that DRRIP is

no longer among the best configurations for exclusive caches. In the baseline size,

DRRIP with no L1 prefetcher and DAAMPM was the second best configuration.

In the large size, while the others stay similar, DRRIP performance drops a little.

Among the best configurations, KPC-P prefetcher and LRU is also among the best

apart from the configurations with no L1 prefetcher and DAAMPM that was the

preferred option for the baseline size.

Interestingly, on average, the speedups achieved by the exclusive cache with the

smaller sizes are slightly better than with a larger cache. This is because a few

benchmarks perform worse in the large cache. The inclusive and non-inclusive achieve

similar speedups, on average, with both cache sizes.

For inclusive and non-inclusive caches, the best six configurations are the same

as for the baseline size, being the prefetcher the determining component. Again, the

best prefetcher combination is no L1 prefetcher plus KPC-P L2 prefetcher.

6.3.2 Prefetcher Impact

The prefetchers continue to determine the performance of all configurations. The

prefetcher that dominates for inclusive and non-inclusive is KPC-P, the same as in

small caches. For exclusive caches, the best one is DAAMPM. Both of them are

better without L1 prefetcher.

IP-stride and next-line perform worse on large exclusive caches for any replace-

ment policy and any L1 prefetcher.

For an inclusive or non-inclusive large cache, some prefetchers achieve better

speedup than with a smaller cache, for example, DAAMPM. We found the large

cache, for inclusive and non-inclusive to show more variability and higher perfor-

78

mance.

6.3.3 Replacement Policy Impact

LRU is still the best replacement policy for any combination of prefetchers for

the exclusive cache. In the large cache it performs even better. For example, as

aforementioned, the LRU configuration with KPC-P is among the best configurations

of the large cache, instead just no L1 prefetcher plus DAAMPM. Also, even with no

prefetchers at all, LRU performs better than for the small cache in comparison to

the rest of replacement policies.

DRRIP provides worse speedup for all inclusion policies in the large cache, for

example, see bwaves (see Appendix A for small cache and Appendix C for large

cache). However, SRRIP performs slightly better. For example, SRRIP with no L1

prefetcher and DAAMPM L2 prefetcher matches and improves DRRIP’s speedup,

which was among the best configurations in exclusive caches for the baseline cache

size.

KPC-R shows worse performance on the large cache for some prefetcher combi-

nations, for example using DAAMPM L2 prefetcher and any L1 prefetcher. This

happens on a few benchmarks such as lbm (see Appendix A for small cache and

Appendix C for large cache).

6.4 Discussion

The single-core results demonstrate that the prefetchers and replacement policies

that work best for non-inclusive and inclusive caches are not the best ones for an

exclusive cache. This motivates further research on prefetching and replacement

policies for exclusive caches and their interaction.

In single-core simulations, the best performance is never achieved using an exclu-

sive policy. However, in multi-core simulations, exclusive caches are the ones that

79

get best performance except on, mostly, configurations with the DRRIP and SHiP

replacement policies. The most interesting property of exclusive caches is that they

increase the effective capacity of the cache. Hence, research on cache management

techniques for exclusive caches should focus on multi-core.

The combinations of prefetchers have a big impact on performance while in re-

placement policies the impact was lower, specifically for exclusive caches. This moti-

vates either more research for prefetching combined with simpler replacement policies

or to design unified cache management techniques tuned for exclusive caches.

The replacement policy that stands out the most is LRU on exclusive caches.

However, true LRU is expensive to implement. It would be interesting to explore

LRU-based replacement policies to compare their performance in exclusive caches.

Also, the best replacement policy for a non-inclusive is different than that for an

inclusive cache for some cases. This should encourage taking the inclusion policy into

account when designing a new replacement policy to decide whether it is necessary

to model an inclusive cache, or the performance of both is similar enough.

Regarding cache size, we found that sometimes, for the same cache configuration,

an specific replacement policy is no longer among the best to use when using a

larger cache. On exclusive caches, which have a higher effective capacity, might

not be necessary to have a very large cache. It might be useful to have a smaller

exclusive LLC and use the extra hardware to improve performance in other system

components.

80

7. SUMMARY

The speed of processors has been increasing at a higher rate than the speed of

memories over the last years. Caches have been designed to mitigate this problem

and increase overall performance. There has been extensive research on how to make

caches provide higher performance, aiming to reduce the total number of misses.

Cache management techniques have been mostly designed and evaluated in the

context of non-inclusive last-level caches (LLCs). However, many modern processors

implement their LLC with either an inclusive or an exclusive policy. The hypothesis

of this thesis is that a cache management technique (prefetcher or replacement policy)

that performs well in one inclusion policy might not be the best for another inclusion

policy.

In this thesis we explored the design space of cache management techniques in

different cache configurations, with a focus on the cache inclusion policy. We imple-

mented an inclusive and an exclusive policy on top of a simulator that had a non-

inclusive policy by default. We evaluated different prefetchers, replacement policies,

cache sizes and number of cores for each inclusion policy.

7.1 Conclusions

We found that the configurations for inclusive and non-inclusive usually per-

formed similarly (depending on the configuration and benchmark), but for exclusive

caches the best configurations were indeed different.

Prefetchers paid an important role on the performance for each cache configura-

tion. In most of the cases, a combination of L1 and L2 prefetchers were the responsi-

ble to determine the best configurations. For example, over all cache configurations,

a winning prefetcher combination had the best speedups with all replacement poli-

81

cies. The replacement policies then, were not as important as the prefetchers for

performance. This shows that many benefits of using different replacement policies

are shadowed by the prefetcher. Therefore, it is very important to implement a state-

of-the-art prefetcher on cache replacement policy research. This also suggests that

it might be more beneficial to use the hardware available to have a best prefetcher

instead of a complicated replacement policy or to design an integrated technique.

The performance of exclusive caches in single-core simulations versus multi-core

simulation was different. In single-core, the performance was generally worse than

inclusive or non-inclusive caches. However, in multi-core, the performance of exclu-

sive caches was superior to the other inclusions except for a few configurations. This

is probably because the higher effective capacity of exclusive caches is better ex-

ploited on multiprogrammed workloads than in single-threaded. This suggests that

studies on cache management for exclusive caches, and any other inclusion policy,

should focus on multi-core processors running either on multiprogrammed or multi-

threaded workloads, also because single-threaded scenarios are rare in current and

future systems.

For exclusive caches, our experiments showed that the best replacement policy

across different prefetcher combinations was LRU. For inclusive and non-inclusive

policies, the best replacement policy was different depending on the case. This

suggests that the inclusion policy can also impact performance by making a different

technique behave better than another. When designing a replacement policy, the

inclusion policy should be considered, mentioned and discussed.

Typical cache sizes can also vary over time and for different systems. Our ex-

periments showed that different cache sizes affect the speedup achieved by different

configurations, in our case, for exclusive caches on single core in particular. Com-

puter architects should keep in mind that the best cache management technique can

82

be different depending on cache size.

7.2 Future Work

One of the insights from this thesis is that future research on multi-core should in-

clude exclusive cache designs given their better speedup. This thesis only investigated

multiprogrammed workloads. In the future, we plan to run similar experiments with

multi-threaded workloads. For this, we will use a different simulator that supports

multithreading.

We also found that exclusive caches had slightly worse speedup in a larger cache

size for single-core. In the future, we will run simulations of multiple cache sizes

on multiprogrammed and multithreaded workloads to validate this result in those

scenarios. If it gets worse speedup in all cases, it might be better to keep a smaller

LLC per core with the increased effective capacity of exclusive caches and use the

area savings to implement other optimizations.

Also, we aim to implement other prefetchers and replacement policies that use

machine learning techniques to assess how those techniques learn and adapt in the

context of different inclusion policies.

We plan to explore the potential of LRU-based replacement policies on exclusive

caches and investigate why they work better than more advanced techniques. LRU

performed better even without prefetchers, so we will initially evaluate LRU without

prefetchers for simplicity to better understand the underlying reasons of its perfor-

mance and assess whether replacement policies are being overdesigned or wrongly

targeted for exclusive caches.

The results in this thesis motivate further research on prefetchers and replacement

policies targeted to exclusive caches. Previous works use LRU as the baseline for the

proposed cache management techniques evaluated in the context of non-inclusive

83

caches. In our work, those techniques outperform LRU for non-inclusive and in-

clusive caches but not for exclusive caches. This means that a different approach

to prefetching and replacement is needed when caches are exclusive. We plan to

learn more about the reasons behind this different behavior and propose new cache

management techniques targeted to exclusive caches, given that they are being more

pervasively used in modern systems.

84

REFERENCES

[1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Elec-

tronics, vol. 38, no. 8, pp. 114–117, 1965.

[2] G. E. Moore, “Progress in Digital Integrated Electronics,” in International Elec-

tron Devices Meeting, vol. 21, pp. 11–13, 1975.

[3] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The

Case for a Single-chip Multiprocessor,” in Proceedings of the 7th International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS VII, pp. 2–11, 1996.

[4] N. P. Jouppi, “Improving Direct-mapped Cache Performance by the Addition of

a Small Fully-associative Cache and Prefetch Buffers,” in Proceedings of the 17th

Annual International Symposium on Computer Architecture, ISCA’90, pp. 364–

373, 1990.

[5] “The 2nd Cache Replacement Champsionship.” http://crc2.ece.tamu.edu.

Accessed: 2017-04-30.

[6] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,

C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the Clouds:

a Study of Emerging Scale-out Workloads on Modern Hardware,” in ACM SIG-

PLAN Notices, vol. 47, pp. 37–48, 2012.

[8] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A. Mehta, and

A. G. Gray, “MLPACK: A Scalable C++ Machine Learning Library,” Journal

85

http://crc2.ece.tamu.edu

of Machine Learning Research, vol. 14, pp. 801–805, 2013.

[9] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications of the

Obvious,” ACM SIGARCH Computer Architecture News, vol. 23, no. 1, pp. 20–

24, 1995.

[10] R. H. Dennard, “Field-effect transistor memory,” June 4 1968. US Patent

3,387,286.

[11] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr, and J. Emer, “Achieving

non-inclusive cache performance with inclusive caches: Temporal locality aware

(tla) cache management policies,” in Proceedings of the 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-43, pp. 151–162, 2010.

[12] N. P. Jouppi and S. J. Wilton, “Tradeoffs in two-level on-chip caching,” in Pro-

ceedings the 21st Annual International Symposium on Computer Architecture,

ISCA’94, pp. 34–45, 1994.

[13] Y. Zheng, B. T. Davis, and M. Jordan, “Performance Evaluation of Exclusive

Cache Hierarchies,” in Proceedings of the 2004 IEEE International Symposium

on Performance Analysis of Systems and Software, ISPASS’04, pp. 89–96, 2004.

[14] T. M. Wong and J. Wilkes, “My cache or yours?: Making storage more ex-

clusive,” in USENIX Annual Technical Conference, USENIX’02, pp. 161–175,

2002.

[15] L. Zhao, R. Iyer, S. Makineni, D. Newell, and L. Cheng, “Ncid: a non-inclusive

cache, inclusive directory architecture for flexible and efficient cache hierarchies,”

in Proceedings of the 7th ACM international conference on Computing Frontiers,

CF’10, pp. 121–130, 2010.

86

[16] “Intel Pentium 4 Willamette.” http://ark.intel.com/products/27426/

Intel-Pentium-4-Processor-1_70-GHz-256K-Cache-400-MHz-FSB. Ac-

cessed: 2017-04-30.

[17] “Intel 64 and IA-32 Architectures Optimization Manual.” https:

//www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-optimization-manual.pdf. Accessed: 2017-04-30.

[18] “Knights Landing Architecture.” http://pages.cs.wisc.edu/~david/

courses/cs758/Fall2016/handouts/restricted/Knights-landing.pdf.

Accessed: 2017-04-30.

[19] “Cortex-A9 Technical Reference Manual.” http://infocenter.arm.com/help/

topic/com.arm.doc.ddi0388i/DDI0388I_cortex_a9_r4p1_trm.pdf. Ac-

cessed: 2017-04-30.

[20] “IBM POWER5 Architecture.” https://www.ibm.com/developerworks/

community/wikis/home?lang=en#!/wiki/Power%20Systems/page/POWER5%

20Architecture. Accessed: 2017-04-30.

[21] “IBM POWER7 Architecture.” https://www.cs.rice.edu/~johnmc/

comp522/lecture-notes/COMP522-2016-Lecture7-Power7.pdf. Accessed:

2017-04-30.

[22] “IBM zEC12.” https://www.hotchips.org/wp-content/

uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.

220-zEC12-Processor-Sonnelitter-IBM-v5.pdf. Accessed: 2017-04-30.

[23] P. Cao, E. W. Felten, and K. Li, “Application-controlled file caching policies.,”

in USENIX Summer, pp. 171–182, 1994.

87

http://ark.intel.com/products/27426/Intel-Pentium-4-Processor-1_70-GHz-256K-Cache-400-MHz-FSB
http://ark.intel.com/products/27426/Intel-Pentium-4-Processor-1_70-GHz-256K-Cache-400-MHz-FSB
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://pages.cs.wisc.edu/~david/courses/cs758/Fall2016/handouts/restricted/Knights-landing.pdf
http://pages.cs.wisc.edu/~david/courses/cs758/Fall2016/handouts/restricted/Knights-landing.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388i/DDI0388I_cortex_a9_r4p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388i/DDI0388I_cortex_a9_r4p1_trm.pdf
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/POWER5%20Architecture
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/POWER5%20Architecture
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/POWER5%20Architecture
https://www.cs.rice.edu/~johnmc/comp522/lecture-notes/COMP522-2016-Lecture7-Power7.pdf
https://www.cs.rice.edu/~johnmc/comp522/lecture-notes/COMP522-2016-Lecture7-Power7.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.220-zEC12-Processor-Sonnelitter-IBM-v5.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.220-zEC12-Processor-Sonnelitter-IBM-v5.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.20-Processors1-epub/HC25.26.220-zEC12-Processor-Sonnelitter-IBM-v5.pdf

[24] R. Karedla, J. S. Love, and B. G. Wherry, “Caching strategies to improve disk

system performance,” Computer, vol. 27, no. 3, pp. 38–46, 1994.

[25] V. Phalke and B. Gopinath, “An Inter-reference Gap Model for Temporal Local-

ity in Program Behavior,” in Proceedings of the 1995 ACM SIGMETRICS Joint

International Conference on Measurement and Modeling of Computer Systems,

SIGMETRICS ’95/PERFORMANCE ’95, pp. 291–300, 1995.

[26] G. Glass and P. Cao, “Adaptive Page Replacement Based on Memory Reference

Behavior,” in Proceedings of the 1997 ACM SIGMETRICS International Con-

ference on Measurement and Modeling of Computer Systems, SIGMETRICS ’97,

pp. 115–126, 1997.

[27] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: Simple and Effective Adap-

tive Page Replacement,” in ACM SIGMETRICS Performance Evaluation Re-

view, vol. 27, pp. 122–133, 1999.

[28] L. A. Belady, “A Study of Replacement Algorithms for a Virtual-storage Com-

puter,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[29] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive

Insertion Policies for High Performance Caching,” in ACM SIGARCH Computer

Architecture News, vol. 35, pp. 381–391, 2007.

[30] T.-F. Chen and J.-L. Baer, “Effective hardware-based data prefetching for high-

performance processors,” IEEE Transactions on Computers, vol. 44, no. 5,

pp. 609–623, 1995.

[31] A. J. Smith, “Sequential Program Prefetching in Memory Hierarchies,” Com-

puter, vol. 11, no. 12, pp. 7–21, 1978.

88

[32] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to reduce

data access penalty,” in Proceedings of the 1991 ACM/IEEE Conference on

Supercomputing, SC’91, pp. 176–186, 1991.

[33] P. Michaud, “Best-offset Hardware Prefetching,” in Proceedings of the 22nd

IEEE International Symposium on High Performance Computer Architecture,

HPCA-22, pp. 469–480, 2016.

[34] Y. Ishii, M. Inaba, and K. Hiraki, “Unified Memory Optimizing Architecture:

Memory Subsystem Control with a Unified Predictor,” in Proceedings of the 26th

ACM International Conference on Supercomputing, ICS’12, pp. 267–278, 2012.

[35] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and

T. C. Mowry, “Mitigating prefetcher-caused pollution using informed caching

policies for prefetched blocks,” ACM Transactions on Architecture and Code

Optimization, vol. 11, no. 4, p. 51, 2015.

[36] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely Jr, and J. Emer, “PACMan:

prefetch-aware cache management for high performance caching,” in Proceedings

of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO-44, pp. 442–453, 2011.

[37] J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley, and C. Wilkerson,

“Kill the program counter: Reconstructing program behavior in the processor

cache hierarchy,” in Proceedings of the 22nd International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS

XXII, pp. 737–749, 2017.

[38] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr, and

J. Emer, “SHiP: Signature-based Hit Predictor for High Performance Caching,”

89

in Proceedings of the 44th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO-44, pp. 430–441, 2011.

[39] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High Performance

Cache Replacement Using Re-reference Interval Prediction (RRIP),” in Proceed-

ings of the 37th Annual International Symposium on Computer Architecture,

ISCA ’10, pp. 60–71, 2010.

[40] S. M. Khan, Y. Tian, and D. A. Jiménez, “Dead Block Replacement and Bypass

with a Sampling Predictor,” in Proceedings of the 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-43, pp. 175–186, 2010.

[41] D. A. Jiménez, “Insertion and Promotion for Tree-based PseudoLRU Last-Level

Caches,” in Proceedings of the 46th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, MICRO-46, pp. 284–296, 2013.

[42] E. Teran, Y. Tian, Z. Wang, D. A. Jiménez, et al., “Minimal Disturbance Place-

ment and Promotion,” in Proceedings of the 22nd IEEE International Sym-

posium on High Performance Computer Architecture, HPCA-22, pp. 201–211,

2016.

[43] T. L. Johnson, D. A. Connors, M. C. Merten, and W.-M. Hwu, “Run-time cache

bypassing,” IEEE Transactions on Computers, vol. 48, no. 12, pp. 1338–1354,

1999.

[44] T. Piquet, O. Rochecouste, and A. Seznec, “Exploiting single-usage for effective

memory management,” in Proceedings of the 12th Asia-Pacific Conference on

Advances in Computer Systems Architecture, ACSAC ’07, pp. 90–101, 2007.

[45] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “A modified approach

to data cache management,” in Proceedings of the 28th Annual International

90

Symposium on Microarchitecture, MICRO-28, pp. 93–103, 1995.

[46] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely Jr, and J. Emer,

“Adaptive insertion policies for managing shared caches,” in Proceedings of the

17th International Conference on Parallel Architectures and Compilation Tech-

niques, PACT’08, pp. 208–219, 2008.

[47] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for mlp-aware

cache replacement,” ACM SIGARCH Computer Architecture News, vol. 34,

no. 2, pp. 167–178, 2006.

[48] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-address

filter: A unified mechanism to address both cache pollution and thrashing,” in

Proceedings of the 21st International Conference on Parallel Architectures and

Compilation Techniques, PACT’12, pp. 355–366, 2012.

[49] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable Errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[50] D. A. Jiménez and C. Lin, “Perceptron Learning for Predicting the Behavior of

Conditional Branches,” in Proceedings of the International Joint Conference on

Neural Networks, IJCNN’01, pp. 2122–2127, 2001.

[51] Y. Freund and R. E. Schapire, “Large margin classification using the perceptron

algorithm,” Machine learning, vol. 37, no. 3, pp. 277–296, 1999.

[52] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron Learning for Reuse Predic-

tion,” in Proceedings of the 49th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO-49, pp. 1–12, 2016.

[53] A. Jain and C. Lin, “Back to the future: leveraging belady’s algorithm for

improved cache replacement,” in Proceedings of the ACM/IEEE 43rd Annual

91

International Symposium on Computer Architecture, ISCA’16, pp. 78–89, 2016.

[54] J. Gaur, M. Chaudhuri, and S. Subramoney, “Bypass and Insertion Algorithms

for Exclusive Last-level Caches,” in ACM SIGARCH Computer Architecture

News, vol. 39, pp. 81–92, 2011.

[55] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney, and J. Nuzman, “Intro-

ducing Hierarchy-awareness in Replacement and Bypass Algorithms for Last-

level Caches,” in Proceedings of the 21st International Conference on Parallel

Architectures and Compilation Techniques, PACT’12, pp. 293–304, 2012.

[56] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for

resource management,” in Workshop on Job Scheduling Strategies for Parallel

Processing, pp. 44–60, 2003.

[57] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder,

“Using simpoint for accurate and efficient simulation,” in ACM SIGMETRICS

Performance Evaluation Review, vol. 31, pp. 318–319, 2003.

[58] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E. Fernandez, and M. Valero,

“Fame: Fairly measuring multithreaded architectures,” in Proceedings of the 16th

International Conference on Parallel Architecture and Compilation Techniques,

PACT’07, pp. 305–316, 2007.

[59] “The 2nd Data Prefetching Championship.” http://comparch-conf.gatech.

edu/dpc2. Accessed: 2017-04-22.

[60] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach. Elsevier, 2012.

92

http://comparch-conf.gatech.edu/dpc2
http://comparch-conf.gatech.edu/dpc2

A. SINGLE-CORE RESULTS

This appendix contains the single-core plots for all the benchmarks used. In the

main thesis only the geomean speedup plots are showed for readability. Below there

is a description of how to read the plots.

These plots compare different configurations of L1 and L2 prefetchers, replace-

ment policies and cache inclusions. The configurations compared are: L1 prefetcher,

L2 prefetcher, replacement policy and cache inclusion.

The title of the plot indicates the name of the benchmark. The Y-axis shows

the speedup over the baseline configuration: no prefetchers, LRU replacement policy

and a non-inclusive cache. The X-axis shows the different cache configurations, in

order of: L1 prefetcher (l1p), L2 prefetcher (l2p) and replacement policy (repl). The

inclusion of the cache is shown in the legend: exclusive "EXC", inclusive "INC" and

non-inclusive "NON".

93

A
.1

A
st

ar

94

A
.2

B
w

av
es

95

A
.3

B
zi

p2

96

A
.4

C
ac

tu
sA

D
M

97

A
.5

D
at

a_
C

ac
hi

ng

98

A
.6

G
cc

99

A
.7

G
em

sF
D

T
D

100

A
.8

G
ra

ph
_

A
na

ly
ti

cs

101

A
.9

G
ro

m
ac

s

102

A
.1

0
L
bm

103

A
.1

1
L
es

lie
3d

104

A
.1

2
L
ib

qu
an

tu
m

105

A
.1

3
M

cf

106

A
.1

4
M

ilc

107

A
.1

5
M

lp
ac

k_
C

f

108

A
.1

6
O

m
ne

tp
p

109

A
.1

7
Sa

t_
So

lv
er

110

A
.1

8
So

pl
ex

111

A
.1

9
Sp

hi
nx

3

112

A
.2

0
W

rf

113

A
.2

1
X

al
an

cb
m

k

114

A
.2

2
Z
eu

sm
p

115

B. MULTI-CORE RESULTS

This appendix contains the multi-core plots for all the benchmarks used. In the

main thesis only the geomean speedup plots are showed for readability. Below there

is a description of how to read the plots.

These plots compare different configurations of L1 and L2 prefetchers, replace-

ment policies and cache inclusions. The configurations compared are: L1 prefetcher,

L2 prefetcher, replacement policy and cache inclusion.

The title of the plot indicates the name of the benchmark. The Y-axis shows

the speedup over the baseline configuration: no prefetchers, LRU replacement policy

and a non-inclusive cache. The X-axis shows the different cache configurations, in

order of: L1 prefetcher (l1p), L2 prefetcher (l2p) and replacement policy (repl). The

inclusion of the cache is shown in the legend: exclusive "EXC", inclusive "INC" and

non-inclusive "NON".

116

B
.1

A
st

ar
-B

zi
p2

-S
ph

in
x3

-D
at

a_
C

ac
hi

ng

117

B
.2

A
st

ar
-B

zi
p2

-S
ph

in
x3

-D
at

a_
C

ac
hi

ng

118

B
.3

A
st

ar
-L

es
lie

3d
-S

op
le

x-
Z
eu

sm
p

119

B
.4

B
w

av
es

-M
ilc

-D
at

a_
C

ac
hi

ng
-S

at
_

So
lv

er

120

B
.5

B
zi

p2
-O

m
ne

tp
p-

D
at

a_
C

ac
hi

ng
-G

ra
ph

_
A

na
ly

ti
cs

121

B
.6

C
ac

tu
sA

D
M

-G
em

sF
D

T
D

-L
bm

-L
es

lie
3d

122

B
.7

C
ac

tu
sA

D
M

-G
ro

m
ac

s-
L
bm

-M
ilc

123

B
.8

C
ac

tu
sA

D
M

-G
ro

m
ac

s-
Sp

hi
nx

3-
Sa

t_
So

lv
er

124

B
.9

M
cf

-M
ilc

-O
m

ne
tp

p-
Sa

t_
So

lv
er

125

C. SINGLE-CORE SIZE SENSITIVITY RESULTS

This appendix contains the single-core with larger cache plots for all the bench-

marks used. In the main thesis only the geomean speedup plots are showed for

readability. Below there is a description of how to read the plots.

These plots compare different configurations of L1 and L2 prefetchers, replace-

ment policies and cache inclusions. The configurations compared are: L1 prefetcher,

L2 prefetcher, replacement policy and cache inclusion.

The title of the plot indicates the name of the benchmark. The Y-axis shows

the speedup over the baseline configuration: no prefetchers, LRU replacement policy

and a non-inclusive cache. The X-axis shows the different cache configurations, in

order of: L1 prefetcher (l1p), L2 prefetcher (l2p) and replacement policy (repl). The

inclusion of the cache is shown in the legend: exclusive "EXC", inclusive "INC" and

non-inclusive "NON".

126

C
.1

A
st

ar

127

C
.2

B
w

av
es

128

C
.3

B
zi

p2

129

C
.4

C
ac

tu
sA

D
M

130

C
.5

D
at

a_
C

ac
hi

ng

131

C
.6

G
cc

132

C
.7

G
em

sF
T

D

133

C
.8

G
ra

ph
_

A
na

ly
ti

cs

134

C
.9

G
ro

m
ac

s

135

C
.1

0
L
bm

136

C
.1

1
L
es

lie
3d

137

C
.1

2
L
ib

qu
an

tu
m

138

C
.1

3
M

cf

139

C
.1

4
M

ilc

140

C
.1

5
M

lp
ac

k_
C

f

141

C
.1

6
O

m
ne

tp
p

142

C
.1

7
Sa

t_
So

lv
er

143

C
.1

8
So

pl
ex

144

C
.1

9
Sp

hi
nx

3

145

C
.2

0
W

rf

146

C
.2

1
X

al
an

cb
m

k

147

C
.2

2
Z
eu

sm
p

148

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	My Project
	Objectives
	Contributions

	Document Structure

	BACKGROUND
	Memory Hierarchy
	Miss Types
	Load Flow
	Write Policies
	Cache Coherence
	MSI Protocol
	MSI-Like Protocols

	Inclusion Policies
	Inclusive
	Exclusive
	Non-Inclusive
	Summary of Inclusions

	Replacement Policies
	LRU

	Prefetchers
	Next-Line
	Instruction Pointer-Based Stride
	Best-Offset
	DRAM-Aware Access Map Pattern Matching
	KPC

	RELATED WORK
	Re-Reference Interval Prediction
	Sampling Dead Block Prediction
	Signature-Based Hit Predictor
	Minimal Disturbance Placement and Promotion
	Evicted Address Filter
	Perceptron Learning for Reuse Prediction
	Hawkeye
	Bypass and Insertion
	Hierarchy-Awareness and Bypass

	METHODOLOGY
	Experimental Setup
	Host Machine
	Benchmarks
	Simulator

	Evaluation
	Configurations
	Performance Measurement

	IMPLEMENTATION
	ChampSim Code
	Cache Operation
	Non-Inclusive Implementation
	Statistics

	Modifying ChampSim
	Inclusive Implementation
	Exclusive Implementation

	Scripts
	Execute
	Plots

	RESULTS
	Single-Core Results
	Inclusion Results
	Prefetcher Impact
	Replacement Policy Impact

	Multi-Core Results
	Inclusion Results
	Prefetcher Impact
	Replacement Policy Impact

	Size Sensitivity
	Inclusion Results
	Prefetcher Impact
	Replacement Policy Impact

	Discussion

	SUMMARY
	Conclusions
	Future Work

	REFERENCES
	APPENDIX SINGLE-CORE RESULTS
	Astar
	Bwaves
	Bzip2
	CactusADM
	Data_Caching
	Gcc
	GemsFDTD
	Graph_Analytics
	Gromacs
	Lbm
	Leslie3d
	Libquantum
	Mcf
	Milc
	Mlpack_Cf
	Omnetpp
	Sat_Solver
	Soplex
	Sphinx3
	Wrf
	Xalancbmk
	Zeusmp

	APPENDIX MULTI-CORE RESULTS
	Astar-Bzip2-Sphinx3-Data_Caching
	Astar-Bzip2-Sphinx3-Data_Caching
	Astar-Leslie3d-Soplex-Zeusmp
	Bwaves-Milc-Data_Caching-Sat_Solver
	Bzip2-Omnetpp-Data_Caching-Graph_Analytics
	CactusADM-GemsFDTD-Lbm-Leslie3d
	CactusADM-Gromacs-Lbm-Milc
	CactusADM-Gromacs-Sphinx3-Sat_Solver
	Mcf-Milc-Omnetpp-Sat_Solver

	APPENDIX SINGLE-CORE SIZE SENSITIVITY RESULTS
	Astar
	Bwaves
	Bzip2
	CactusADM
	Data_Caching
	Gcc
	GemsFTD
	Graph_Analytics
	Gromacs
	Lbm
	Leslie3d
	Libquantum
	Mcf
	Milc
	Mlpack_Cf
	Omnetpp
	Sat_Solver
	Soplex
	Sphinx3
	Wrf
	Xalancbmk
	Zeusmp

