48 research outputs found

    Settlement of <i>Macoma balthica</i> larvae in response to benthic diatom films

    Get PDF
    The role of multi-species benthic diatom films (BDF) in the settlement of late pediveliger larvae of the bivalve Macoma balthica was investigated in still-water bioassays and multiple choice flume experiments. Axenic diatom cultures that were isolated from a tidal mudflat inhabited by M. balthica were selected to develop BDF sediment treatments characterized by a different community structure, biomass, and amount of extracellular polymeric substances (EPS). Control sediments had no added diatoms. Although all larvae settled and initiated burrowing within the first minute after their addition in still water, regardless of treatment, only 48-52% had completely penetrated the high diatom biomass treatments after 5 min, while on average 80 and 69% of the larvae had settled and burrowed into the control sediments and BDF with a low diatom biomass (3.5 µg Chl a g1 dry sediment), respectively. The percentage of larvae settling and burrowing into the sediment was negatively correlated with the concentration of Chl a and EPS of the BDF. This suggests higher physical resistance to bivalve penetration by the BDF with higher diatom biomass and more associated sugar and protein compounds. The larval settlement rate in annular flume experiments at flow velocities of 5 and 15cm s1 was distinctly lower compared to the still-water assays. Only 4.6-5.8% of the larvae were recovered from BDF and control sediments after 3h. Nonetheless, a clear settlement preference was observed for BDF in the flume experiments; i.e., larvae settled significantly more in BDF compared to control sediments irrespective of flow speed. Comparison with the settlement of polystyrene mimics and freeze-killed larvae led to the conclusion that active selection, active secondary dispersal and, at low flow velocities (5cm s1), passive adhesion to the sediment are important mechanisms determining the settlement of M. balthica larvae in estuarine biofilms

    Atenolol versus losartan in children and young adults with Marfan's syndrome

    Get PDF
    BACKGROUND : Aortic-root dissection is the leading cause of death in Marfan's syndrome. Studies suggest that with regard to slowing aortic-root enlargement, losartan may be more effective than beta-blockers, the current standard therapy in most centers. METHODS : We conducted a randomized trial comparing losartan with atenolol in children and young adults with Marfan's syndrome. The primary outcome was the rate of aortic-root enlargement, expressed as the change in the maximum aortic-root-diameter z score indexed to body-surface area (hereafter, aortic-root z score) over a 3-year period. Secondary outcomes included the rate of change in the absolute diameter of the aortic root; the rate of change in aortic regurgitation; the time to aortic dissection, aortic-root surgery, or death; somatic growth; and the incidence of adverse events. RESULTS : From January 2007 through February 2011, a total of 21 clinical centers enrolled 608 participants, 6 months to 25 years of age (mean [+/- SD] age, 11.5 +/- 6.5 years in the atenolol group and 11.0 +/- 6.2 years in the losartan group), who had an aorticroot z score greater than 3.0. The baseline-adjusted rate of change (+/- SE) in the aortic-root z score did not differ significantly between the atenolol group and the losartan group (-0.139 +/- 0.013 and -0.107 +/- 0.013 standard-deviation units per year, respectively; P = 0.08). Both slopes were significantly less than zero, indicating a decrease in the degree of aortic-root dilatation relative to body-surface area with either treatment. The 3-year rates of aortic-root surgery, aortic dissection, death, and a composite of these events did not differ significantly between the two treatment groups. CONCLUSIONS : Among children and young adults with Marfan's syndrome who were randomly assigned to losartan or atenolol, we found no significant difference in the rate of aorticroot dilatation between the two treatment groups over a 3-year period

    Introduction and Historical Review

    Get PDF

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Brucella pinnipedialis in grey seals (Halichoerus grypus) and harbor seals (Phoca vitulina) in the Netherlands

    No full text
    Brucellosis is a zoonotic disease with terrestrial or marine wildlife animals as potential reservoirs for the disease in livestock and human populations. The primary aim of this study was to assess the presence of Brucella pinnipedialis in marine mammals living along the Dutch coast and to observe a possible correlation between the presence of B. pinnipedialis and accompanying pathology found in infected animals. The overall prevalence of Brucella spp. antibodies in sera from healthy wild grey seals (Halichoerus grypus; n=11) and harbor seals (Phoca vitulina; n=40), collected between 2007 and 2013 ranged from 25% to 43%. Additionally, tissue samples of harbor seals collected along the Dutch shores between 2009 and 2012, were tested for the presence of Brucella spp. In total, 77% (30/ 39) seals were found to be positive for Brucella by IS711 real-time PCR in one or more tissue samples, including pulmonary nematodes. Viable Brucella was cultured from 40% (12/30) real-time PCR-positive seals, and was isolated from liver, lung, pulmonary lymph node, pulmonary nematode, or spleen, but not from any PCR-negative seals. Tissue samples from lung and pulmonary lymph nodes were the main source of viable Brucella bacteria. All isolates were typed as B. pinnipedialis by multiple-locus variable number of tandem repeats analysis-16 clustering and matrix-assisted laser desorption ionization-time of flight mass spectrometry, and of sequence type ST25 by multilocus sequence typing analysis. No correlation was observed between Brucella infection and pathology. This report displays the isolation and identification of B. pinnipedialis in marine mammals in the Dutch part of the Atlantic Ocean.</p
    corecore